

Next generation of advanced integrated assessment modelling to support climate policy making

Legitimacy of model applications in policy context

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821124.

Dimensions of Legitimacy

- Realism
- Relevance
- Fairness
- Transparency
- Robustness

Next generation of advanced integrated assessment modelling to support climate policy making

Realism

- Reproduce current state of and trends in energy system / land system
 - Do stakeholders recognize the energy/land-use/emissions data?
 - If not, do they understand why data is different from e.g. national inventories or other national and international sources?
- Represent country/region-specific structures where necessary
 - Energy system: resources, cross-border interconnected power system or not
 - Land system: staple and cash crops, trade, protected areas
 - Industry: resources, economic openness, trade
 - Adaptation: key vulnerabilities and risks, sub-national/income-group granularity
 - Etc.

Relevance

- Results should directly speak to future (political) concerns
 - Mitigation goals must be clear and timely (e.g. well below 2°C and limited to 1.5°C, zero emissions, minimizing climate-change damages through mitigation and adaptation)
 - Assess controversial or desirable mitigation on supply-side (e.g. nuclear energy, biomass, CCS, afforestation/reforestation, electricity storage, hydrogen)
 - Assess controversial or desirable mitigation on demand-side (e.g. diets, transport modes)
 - Be explicit regarding costs, (co-)benefits, investment needs, returns on investment
 - Assess impacts, damages and adaptation (capacity, barriers & limits)
 - Assess synergies and trade-offs with other policy areas (e.g. just transition, SDGs)
- Results should directly speak to current (political) concerns
 - Mitigation trajectories should also solve present-day problems of immediate political and social concern (e.g. energy access, energy security, air pollution)
 - Assessment of climate-change impacts and damages should indicate both overlaps and differences with present-day impacts and hazards

Next generation of advanced integrated assessment modelling to support climate policy making

Fairness

- How are costs and benefits distributed between countries? Between income groups (incl. within countries)?
- Fairness of mitigation action
 - Assess distribution of economic costs and investments
 - Assess distribution of other costs (e.g. jobs lost/gained, life style)
 - Assess distribution of co-benefits (e.g. energy access, air pollution)
- Fairness of impacts and adaptation needs
 - Assess distribution of climate-change risks and damages (economic and not)
 - Assess distribution of adaptive capacity

INAVIGATE

Transparency

- Clear communication of assumptions:
 - Which technologies are available?
 - At which costs, potentials, side-effects?
 - Limitations which technologies are not available?
 →Important tool: sensitivity analysis
- Model documentation, open source, open access
- Clear communication of uncertainties:
 - social-economics \rightarrow SSPs
 - future costs, potentials/availability
 - remaining carbon budgets
 - \rightarrow Important tool: scenarios

INAVIGATE

Robustness

Scientific basis of models:

Do models include the necessary technologies, policies, granularity, etc.? Are models and methodologies embedded in solid scientific literature? Are they peer-reviewed? IPCC?

• Understanding of models and results:

Understanding of differences between and robust patterns across models, and the mechanisms behind \rightarrow Model intercomparisons Understand differences between bottom-up and top-down models

• Which types of results are robust?

E.g. Pattern and structures like *"*availabilty of nuclear has little influence on mitigation costs" are more robust; specific numbers for a certain technology, region, time step, are much less robust

INAVIGATE

What do models need in order to be legitimate tools to inform climate policy? BOG discussion

- What other dimensions of Legitimacy should NAVIGATE consider?
- Which dimensions and aspects are most important and "disqualify" some models or results if missing?
- How the dimensions of Legitimacy are weighted and prioritized may depend on the purpose and perspective of stakeholders and may vary for different countries and stakeholders – which stakeholder perspectives should NAVIGATE account for?
- What are these perspectives and what does that imply for dimensions/aspects of Legitimacy that can guide NAVIGATE work?

