
AIM Modelling for NAVIGATE 

 

1. Presentation of the Aviation Integrated Model (AIM) 

The Aviation Integrated Model (AIM) is a global aviation systems model which simulates 

interactions between passengers, airlines, airports and other system actors into the future, with 

the goal of providing insight into how policy levers and other projected system changes will 

affect aviation’s externalities and economic impacts. The model was originally developed in 

2006-2009 with UK research council funding (e.g. Reynolds et al., 2007; Dray et al. 2014)1, 

and was updated as part of the ACCLAIM project (2015-2018) between University College 

London, Imperial College and Southampton University (e.g. Dray et al., 2019)2, with additional 

input from MIT regarding electric aircraft (e.g. Schäfer et al., 2018)3. The model is open-

source, with code, documentation and a simplified version of model databases which omit 

confidential data available from the UCL Air Transportation Systems Group website4. AIM 

has been used for aviation policy and technology assessment in a wide range of contexts, 

including for the UK Department for Transport5, EC DG CLIMA6, and the International Energy 

Agency7. 

AIM uses a modular, integrated approach to simulate the global aviation system and its 

response to policy. The basic model structure is shown in Figure 1. AIM consists of seven 

interconnected modules. The Demand and Fare Module projects true origin-ultimate 

destination demand between a set of cities representing approximately 95% of global scheduled 

RPK8, using a gravity-type model based on origin and destination population and income, 

average journey generalized cost, and other factors, as detailed in Dray et al. (2014). Within 

each city-city passenger flow, airport choice and routing choice (including hub airport for 

multi-segment journeys) are handled using a multinomial logit model. Itinerary choice is 

modelled as a function of journey time, cost, number flight segments, available flight frequency 

and characteristics of the origin and destination airports. This model is described further in 

Dray & Doyme (2019)9. Fares per individual itinerary are simulated using a fare model (Wang 
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et al., 2017)10 based on airline costs by type per segment, demand, route-level competition, 

low-cost carrier presence and other factors. These models are estimated primarily on detailed 

disaggregate global passenger routing and fare data from Sabre (2017)11. 

Figure 1. AIM model structure 

 

AIM model structure. 

The Airline and Airport Activity Module, given segment-level demand, assesses which aircraft 

will be used to fly these routes and at what frequency, using a multinomial logit model 

estimated from historical scheduling data (Sabre, 2017) and dividing the fleet into nine size 

categories. Given these aircraft movements per airport, a queuing model then estimates what 

the resulting airport-level delays would be (Evans, 2008)12. Given the lack of long-term airport 

capacity forecasts, in most cases this delay model is used to estimate the amount of (city-level) 

capacity that would be required to keep delays at current levels.  

The aircraft movement module assesses the corresponding airborne routes and the consequent 

location of emissions. In particular, routing inefficiencies which increase ground track distance 

flown beyond great circle distance, and fuel use above optimal for the given flight distance, are 

modelled using distance-based regional inefficiency factors based on an analysis of radar track 

data, as discussed in Reynolds (2008)13.  
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Given typical aircraft utilization, the aircraft technology and cost module assesses the size, 

composition, age and technology use of the aircraft fleet, and the resulting costs for airlines 

and emissions implications. First, aircraft movements by size class including routing 

inefficiency from the Aircraft Movement Module are input to a performance model (estimated 

from outputs of the PIANO-X14 model with reference aircraft types and missions for CO2 and 

NOx, the FOX methodology (Stettler et al. 2013)15 for PM2.5, and Wood et al. (2008)16 for 

NO2). Second, the costs of operating this fleet for the given schedule are estimated based on 

historical cost data by category and aircraft type (Al Zayat et al, 201717). Third, emissions and 

costs are adjusted to account for the current age distribution and technology utilization of the 

fleet, including typical retirement and freighter conversion behavior (e.g. Dray, 2013)18. 

Finally, any shortfall in aircraft required to perform the given schedule is assumed made up by 

new purchases, and the uptake of technology and emissions mitigation measures by both new 

aircraft and existing ones is assessed on a net present value basis, as described in Dray et al. 

(2018)19, and the impact of this on costs and emissions is assessed.  

These four modules are run iteratively until a stable solution is reached. Data is then output 

which can be used in the impacts modules, shown on the right of Figure 1. The global climate 

module is a rapid, reduced-form climate model which calculates the resulting climate metrics 

(e.g. CO2e in terms of global temperature potential (GTP) and global warming potential (GWP) 

at different time horizons; see Krammer et al., 201320). The air quality and noise module are 

similarly rapid, reduced-form models which provide metrics by airport for the noise and 

local/regional air quality impacts of the projected aviation system. In the case of air quality, 

dispersion modelling for primary pollutants uses a version of the RDC code (e.g. Yim et al., 

2015)21. The type of noise modelling carried out depends on whether data on standard flight 

routes per airport is available, but for all airports noise modelling based on total noise energy 

is carried out (Torija et al. 2016, 2017)22. The regional economics module looks in more detail 

at the economic impacts, including benefits such as increased employment as well as costing 

of noise and air quality impacts. 

The output data from the first four AIM modules can also be used more generally as input to 

external impacts models: for example, the model includes the option to produce detailed 

emissions inventories which can be input into climate models. Further information on the 
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individual sub-models, on model validation, and on typical model inputs and outputs can be 

found in the papers cited above and, in the model documentation.  

 

2. Use of AIM in NAVIGATE 

 

A single AIM model run to 2100 can take several hours. As such, it is not possible to 

integrate AIM directly into multi-sector integrated assessment models. Instead, a 

metamodeling approach is taken here. We consider the most important factors affecting 

future aviation demand and emissions to be: 

 Socioeconomic scenario (e.g. population, GDP, and potentially changes in attitudes to 

flying), 

 Oil price, 

 Carbon price, and  

 Technology characteristics. 

For each of these factors, we define a range of model inputs and carry out a grid of model 

runs using those inputs. These are discussed individually below. 

2.1 Socioeconomic scenario 

For socioeconomic scenarios, we use the widely-used IPCC SSP scenario set23 rather than 

defining specific income and population scenarios to interpolate against ourselves. This 

allows more consistency with other modelling, which typically uses these scenarios. The SSP 

scenarios differ both in population and income and in the implied storyline about how much 

global effort is applied towards emissions reductions. For these model runs, we use 

population and income projections, but do not consider other components of scenario 

storyline; it is assumed that, where relevant, these will affect aviation sector outcomes via 

(user-specified) choices about carbon and oil prices, technology availability, and alternative 

fuels. For example, SSP1 involves relatively robust income growth under the assumption that 

nations work together to combat climate change. This income growth in turn, when used as 

an AIM input, drives robust demand growth and leads to SSP1 being scenario with typically a 

high demand for aviation fuel. Although there is the possibility (highlighted by the sector’s 

frequent omission from country-level targets and international agreements) that this fuel use 

remains dominated by fossil Jet A and aviation emissions continue to rise against a backdrop 

of falling emissions elsewhere, it is more likely that there would be significant use of 

alternative aviation fuels. The modelling of alternative fuels is discussed in ‘Using the AIM 

metamodel’, below.  

For the AIM metamodel, we have currently included four user-selectable options for 

socioeconomic scenario: 

 SSP1 (high economic growth, low population growth, implied robust global effort 

towards emissions reduction); 

 SSP2 (‘business as usual’ type trends); 

 SSP3 (Low economic growth and additional decoupling of demand growth from GDP 

growth24); and 
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 SSP4 (Relatively low economic growth with inequality between different world 

regions). 

We omit the final SSP5 scenario (very high, fossil fuel-intensive economic growth) as, 

particularly in light of the Covid19 pandemic, the aviation demand projections resulting from 

SSP5 are above most literature projections, but this can be included in future if needed. Note 

that none of the model runs used include Covid19. AIM runs including Covid19 indicate that 

there may be some long-term impacts on aviation CO2 arising particularly from long-term 

offsets in economic growth; these could potentially be simulated by adjusting demand 

downwards or using a lower income growth socioeconomic scenario.     

2.2 Oil and carbon prices 

For oil and carbon prices, we carry out a grid of model runs at each combination of 

socioeconomic and technology scenario. Following an examination of historical oil prices 

and oil price projections, yearly average oil prices between $30/bbl (year 2015 US dollars) 

and $190/bbl are considered. For each grid model run, the oil price is assumed to remain 

constant at this value after a brief period of adjustment from base year values. Because TIAM 

generates its own estimates of aviation fuel price, for consistency we provide a routine which 

estimates the link between kerosene and oil price so that the grid of model runs can also be 

interpolated between using kerosene prices estimates. Similarly, because TIAM uses year 

2005 dollars internally, we convert inputs to account for this.   

For carbon prices, values of between $0/tCO2 (year 2015 US dollars) and $1000/tCO2 are 

considered. Carbon prices are assumed applied to all aviation CO2 in the metamodel input 

runs. It is notable that most policies which apply a carbon price to aviation at present (e.g. the 

EU ETS and ICAO’s CORSIA) do so only on CO2 above a baseline threshold and/or for a 

limited range of countries or type of flights. In this case the effective carbon price is much 

lower, but can be found straightforwardly using the metamodel by calculating the amount of 

emissions above the baseline and reducing the carbon price supplied to the metamodel per 

country and/or type of flight accordingly.   

 

2.3 Technology characteristics 

Modelling aviation emissions to 2100 requires an estimation of how aircraft technologies will 

develop to 2100. This is extremely uncertain and, in order to generate the AIM metamodel, 

we make several simplifying assumptions here.  

First, it is possible that there may be a radical shift in aviation technology over the next 80 

years. In particular, there is the possibility of a shift to electric or hydrogen-powered aviation. 

Following a review of available literature, we assess that both of these shifts, though possible, 

are not the most likely route for large-scale aviation decarbonization. For all-electric aircraft, 

range limitations mean that initial potential is limited to small aircraft and short-haul routes 

only, strongly limiting the amount of aviation fossil fuel that can be substituted even by 

207025. Further expanding electric aircraft range would require new battery chemistries that 

are not currently in use. While hydrogen-powered aviation has attracted renewed interest 

recently, most notably from Airbus26, a hydrogen-fueled aviation system would require 

substantial infrastructure provision, widespread fleet replacement, and significant cost 

                                          
25 Schäfer A., Barrett, S., Doyme, K., Dray, L., Gnadt, A., Self, R., O’Sullivan, A., Synodinos, A., & Torija, A., 2018. 

Technological, economic and environmental prospects of all-electric aircraft. Nature Energy, 4, 160-166. 

26 E.g. Clean Skies, 2020. Hydrogen-Powered Aviation. https://www.cleansky.eu/sites/default/files/inline-

files/20200507_Hydrogen-Powered-Aviation-report.pdf. 



barriers. As such, it is more likely that changes in aircraft fuel source will come via the 

adoption of drop-in alternative fuels, either biofuels or Power-To-Liquids (PTL); in a future 

hydrogen economy, we assume that green hydrogen would be used in drop-in PTL fuel 

production rather than being directly burnt in adapted aircraft engines. These fuels can be 

used in existing aircraft which, given the 30+ year lifetime of a typical aircraft, is a 

significant advantage. Future scenarios for aviation decarbonization which include significant 

use of drop-in fuel include those developed by the IEA27. Other scenarios, including the UK 

CCC’s recent Net Zero report28, anticipate increased use of drop-in alternative aviation fuel 

but also significant remaining use of aviation fossil fuel which is offset via reductions in 

other sectors. We therefore assume that the most likely technology shift away from fossil 

fuels in aviation is likely to come via drop-in fuels, and do not model hydrogen or electric 

aircraft in detail.     

Second, we need to evaluate how other aircraft technologies and operational strategies are 

likely to change to 2100. Because AIM estimates whether airlines will adopt new 

technologies based on the associated costs, this includes estimates of the costs associated with 

each technology. Typically, new generations of aircraft models become available every 15-20 

years, with a fuel economy benefit of around 20% over their predecessors. Additional 

changes in operations (e.g., shifts to higher load factor and longer-haul flights) and increasing 

system efficiency have led to average yearly improvements in fuel use per revenue 

passenger-km (RPK) flown of over 2% since 1980. Typical aircraft in the most recent 

generation of aircraft models include the Airbus A320neo and Boeing 737MAX. If historical 

behavior is maintained, the next generation of new aircraft models is expected sometime in 

the 2030-35 time period, with a subsequent generation around 2040-50.  A comprehensive 

evaluation of the technologies on these aircraft and their associated costs was carried out by 

ATA & Ellondee (2018)29 for the UK DfT and CCC.  Table 1 shows their assessment of 

likelihood, entry into service date, and fuel use benefits for some key airframe and engine 

technology options. In general, the report considers Ultra-high bypass ratio engines, increased 

wing aspect ratio, and increased use of composite materials most likely developments for the 

next generation of aircraft. For the subsequent generation, there is the possibility of hybrid 

electric aircraft designs as well as further refinements of the previously-mentioned airframe 

and engine technologies. Improvements in operations are most likely to come via 

electrification of taxiing and air traffic management improvements, as shown in Table 2Table 

3. Each of these technologies has some level of uncertainty both in the amount that it is 

utilized on future aircraft, and in the amount that it can reduce fuel use for a given aircraft 

that it is utilized on.  
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Table 1. Airframe and engine technology potential on the next two generations of aircraft, from 
ATA & Ellondee (2018).  

 

Figure 1 shows how these technology potentials combine for the 2045-2050 generation of 

aircraft, in comparison to present-day aircraft (e.g. the Airbus A320ceo or Boeing 777). For 

these technology characteristics, we include three different technology scenarios (1, 2 and 3) 

based on the given uncertainty range across technology availability and potential. Technology 

scenario 2 represents the ‘most likely’ judgement of how technology potential and costs will 

develop. Technology scenario 1 represents the case where technologies are available on the 

early end of the time range expected, with benefits on the high end of those anticipated, and 

costs on the low end, i.e. am ‘optimistic’ technology case. Conversely, technology scenario 3 

represents a ‘pessimistic’ case in which tcehnologies are later than anticipated, have higher 

costs and lower benefits. All technology potentials are adapted to the AIM set of size classes 

and reference aircraft, which differ from those used in ATA and Ellondee (2018).  



Table 2. Operational measure potential for current and future aurcraft, from ATA & Ellondee 
(2018). 

 

Table 3. Potential for reductions in fuel use via improved air traffic control, from ATA and Ellondee 
(2018).  

 



 

Figure 1. Fuel burn change of the 2045-2050 aircraft generation in comparison to typical current 

aircraft, from ATA & Ellondee (2018). The aircraft classes shown are those used by the DfT and 
range from small single aisle aircraft (Class 2) to Very Large Aircraft (Class 5).  

After 2050, several further generations of aircraft are likely before 2100. For these aircraft, it 

is less feasible to examine the specific technologies that are likely to influence their design. 

Instead, we assess their capabilities by looking at long-term trends in fuel use and costs, and 

comparison with industry goals. Relevant system goals include: 

 ACARE (Flightpath 2050)30: 75% reduction in CO2 per RPK, 90% reduction in NOx 

and 65% reduction in perceived noise by 2050, compared to typical new aircraft. 

 ICAO’s carbon standard; as noted by ICCT (2017)31, the main current purpose of this 

standard is to prevent backsliding in technology development. However, it is feasible 

that it could be strengthened in future.  

 IATA32 long-term targets: net 50% reduction in aviation CO2 by 2050 compared to 

2005, with aspirational 2%/year improvement in fuel efficiency. 

Based on estimated technology potential between the past generation of aircraft and those 

available in 2050, we assume a range of percent/year improvements in new aircraft fuel 

economy between 0.5% and 1.3% depending on aircraft size and technology scenario. These 

are separate from benefits achievable via the adoption of operational measures, for which the 

benefits and costs are assumed the same as for the previous generation of aircraft. These 

                                          
30 EC, 2011. Flightpath 2050: Europe’s vision for aviation. 

https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf 

31 ICCT, 2017. ICAO’s Carbon Standard for New Aircraft. https://theicct.org/sites/default/files/publications/ICCT-

ICAO_policy-update_revised_jan2017.pdf 

32 ICAO, 2019. Industry views on the basket of measures and a long-term goal. 

https://www.iata.org/contentassets/e45e5219cc8c4277a0e80562590793da/views-basket-measures-longterm-goal.pdf 



trends are used to estimate the characteristics of aircraft generations to 2100 by technology 

scenario.  

 

Figure 2. Fleet by socioeconomic scenario and technology assumptions over time showing 

different aircraft generations, for a single grid point on the oil/carbon price grid.  

Figure 2 shows global fleet by aircraft generation over time for a single point on the 

oil/carbon price grid and different assumptions about socioeconomic and technology 

scenario. ‘Neo’ refers to the most recent generation of aircraft as represented by the Airbus 

A320neo. ‘NextGen 1’ and ‘NextGen 2’ are the two subsequent generations where 

technology characteristics are modelled in detail. ‘FF1’ – ‘FF3’ are post-2050 aircraft 

generations whose characteristics are modelled using yearly improvement trends. Note that 

nonzero numbers of current-technology aircraft beyond 2050 are typically small turboprop 

aircraft purchases in cases where it is cost-effective to substitute turboprops for small 

regional jets; although there are relatively many of these aircraft, they account for only a 

small percentage of global RPK and do not have a significant impact on global emissions.  
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Figure 3. CO2 per RPK trends by aircraft size to 2100 resulting from aircraft technology 

assumptions, for the SSP2 socioeconomic scenario and mid-range oil and carbon prices. 

Figure 3 shows how typical fleet-level CO2 per RPK flown varies over time to 2100 with 

these scenarios, for the SSP2 socioeconomic scenario, mid-range oil and carbon prices, and 

no alternative fuel. Background shaded areas show the amount of variation that would be 

expected for 1%, 2% and 3%/year average reductions in CO2/RPK; different lines show 

different aircraft size classes (VLA/LTA = Very Large Aircraft/Large Twin Aisle; MTA = 

Medium Twin Aisle; STA = Small Twin Aisle; LSA = Large Single Aisle; MSA = Medium 

Single Aisle; SSA = Small Single Aisle; LRJ = Large Regional Jet; SRJ = Small Regional 

Jet). Note that Small Twin Aisle aircraft have a higher trend than other aircraft types mainly 

because the AIM reference aircraft in that size category is already very fuel-efficient. Initial 

rates of improvement are higher across all size classes because improvements in load factor 

and air traffic management are assumed to come into operation over this time period.  

These trends in fuel use per RPK are somewhat dependent on other model input variables. 

For example, high demand growth rates such as in the SSP1 model runs typically translate 

into a fleet that is more fuel efficient (on average) because on average the fleet is younger; 

low demand growth rates are associated with older, smaller and less fuel-efficient fleets. High 

oil and carbon prices are associated with more adoption of technologies that reduce fuel use 

and emissions.  

 

3. The AIM NAVIGATE metamodel 

 

The metamodel and data needed to use it are available from the GitHub public 

repository: https://github.com/ODessens/NAVIGATE_T3.3 

The data and program can be freely used by all parties. 

 

For use in the NAVIGATE project, we use the outputs of the AIM run grid to generate an 

interpolation-based metamodel. The metamodel is tailored to take inputs that are compatible 

with those used internally in TIAM. It takes as input the socioeconomic scenario (e.g. 

‘SSP2’), technology scenario (e.g. ‘t2’), year (e.g. 2100), regional kerosene price (e.g. $/kg in 

year 2005 USD), carbon price (e.g. $/kgCO2 in year 2005 USD) and TIAM region (e.g. 
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‘AFR’……). For each modelled country in the given region and aviation scope 

(international/domestic) the metamodel interpolates within grids of aviation output metrics 

from the AIM grid runs to produce rapid outputs. For compatibility with other model base 

years that it may be used with, the AIM metamodel can be run from 2005. This uses a 

mixture of AIM inputs from two different base years (2005 and 2015) and, for the time 

period to 2017, the metamodel assumes inputs are consistent with actual historical trends 

(i.e., we do not simulate a grid of different values for years before 2017 and so the model 

cannot be used for historical counterfactual simulation). The interpolation model takes up to a 

minute to read in model data (anticipated to be done once at the start of each run), but can 

produce interpolated model outputs to 2100 in a few seconds. This is in comparison to a full 

AIM run to 2100, which can take several hours.   

The region specification can be varied straightforwardly by adjusting the associated country-

region lookup file in the aviation data directory. The model also be run in two modes: ‘basic’ 

returns only international and domestic aviation fuel use by region, whereas ‘full’ returns a 

much wider selection of variables including number of flights by type, passengers, passenger-

km, freight-tonne-km, NOx and aircraft-km, each divided into international and domestic. It 

is anticipated that the metamodel will be used as part of various feedback loops in which the 

response of aviation fuel demand to changes in other variables may need to be queried 

multiple times. An example slice of the grid data which is interpolated over is given in Figure 

4.  

 



 

Figure 4. Year-2050 global aviation fuel use grid over the full range of oil and carbon prices 

used, for the SSP2 socioeconomic scenario with central technology assumptions.  

Figure 5 shows a comparison of global metrics for full AIM runs and metamodel runs with 

the same inputs to 2100 for the four main socioeconomic scenarios modelled. For testing, 

these use a version of the model in which oil price is used as the interpolation variable, as in 

the main version of AIM, so that outputs can be directly compared. Note, in this case the test 

runs shown all assume 2%/year increase in oil price and 3%/year increase in carbon price 

from a $20/tCO2 year 2020 value (in the original AIM model as well as in the NAVIGATE 

parametric module). Global metrics are obtained by running the model across all world 

regions and summing totals; note that in turn the underlying interpolation is done on a 

country level with regional data produced by aggregating country totals.  
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Figure 5. Comparison of AIM runs (‘AIM’) and the AIM NAVIGATE metamodel (‘NAV’) for 

a range of aviation metrics to 2100 and test oil and carbon price trends. 

The fit is not exact because interpolating in this way misses time lag effects such as the effect 

on the current fleet of past fuel prices, and fuel price hedging (included in the original AIM 

model). These effects will be more pronounced in scenarios with rapid and large variations in 

fuel price. However, accounting for time lag effects such as this would significantly increase 

parametric model complexity and run time, and the difference between the full model and 

metamodel runs remains tiny compared to the uncertainty level due to variations in demand 

or technology. 

3.1 Using the AIM NAVIGATE metamodel 

Currently, the model is supplied as two Python code files and a set of associated data tables. 

These routines also contain extensive comments on how they function and on the definition 

of different variables. Each model run requires two separate components. First, the data tables 

are read in. Second, each time the main IAM using the aviation metamodel requires aviation 

metrics, the interpolation model is run.  

Model_Aviation_NAVIGATE.py is a routine which runs the aviation model in standalone 

mode, for a given set of parameters (socioeconomic scenario, technology scenario, fuel price, 

carbon price).  Model_Aviation_NAVIGATE.py reads in the data file appropriate for the 

specified socioeconomic and technology scenarios, simulates global-level aviation metrics 

between 2005 and 2100 for the given fuel and carbon price given by the IAM, and writes 

these metrics to a CSV file.  Within this routine the user chooses the SSP (1 to 4) and 

technology level (1 to 3) chosen for the study as well as the number of outputs from the 

metamodel: only fuel consumption (0) or the full set of results (1 = consumption, RPK, 

NOx…). The number of outputs has an impact on the speed of the metamodel. 

Functions_Aviation_NAVIGATE.py contains the functions necessary to run the model. 

There are two separate components: initial data read-in (as this is slow, the intention is that 

this is done once at the start of a model run and then the data tables are stored in memory and 

passed to the aviation model each time it is run) and the metamodel itself.  

The functions Read_Grid, Read_Price and Read_Country_Lookup are intended to be run at 

the start of a model run to read in the grid data, the fuel and carbon prices and the regional 
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representation of the IAM. Read_Grid reads in interpolation data for a given filename 

(associated with a given socioeconomic and technology scenario) and run mode (i.e., basic or 

full). Read_Price read the fuel and carbon price for each regions. Read_Country_Lookup 

reads a lookup file of country to region.  

The grid/price/region files are in the directory aviation_grid_data. Within this directory, the 

file Prices_KerCO2.csv contains the fuel and carbon prices resulting from the IAM 

calculations. The country_region_lookup.csv contains the list of region in the IAM and the 

corresponding world countries in each region. This need to be adapted to the geographical 

specific representation of the IAM using the metamodel outputs. 

The function Interpolate_Outcomes should be run during a model run to get aviation fuel use 

and potentially other parameters for a given region and year. It takes as input the model year, 

the world region code to be modelled (e.g. “AFR”), the regional kerosene price in year 2005 

US dollars per kg (can be oil based or blends of oil-based/bio/synthetic), the carbon price for 

that region (assumed to apply to all aviation direct CO2, see below for how to use this to 

model different policies)  in year 2005 US dollars per kg CO2, and the matrices base_grid 

and country_lookup which are functions of the given socioeconomic and technology scenario 

and are read in at the start of each model run by the read-in routines above.    

Before 2017, Interpolate_Outcomes returns the same values regardless of what fuel and 

carbon price are input to it. These values are based on the aviation model output for historical 

GDP, population, fuel and carbon price inputs (2005-2014 are derived from a base year 2005 

run). After 2017, Interpolate_Outcomes interpolates output based on a grid of the aviation 

model runs (extrapolating for values outside that range).  

If Interpolate_Outcomes is run in simple mode, it outputs a two-element array per world 

region containing domestic and international fuel use (in Mt). In full mode, it will output a 

16-element array containing: domestic fuel (in Mt); international fuel (in Mt); domestic  

Revenue-Passenger-Kilometres or RPK; international RPK (in Passenger.km); domestic hold 

freight (Revenue-Tonne-Kilometres or RTK); international hold freight; domestic freight in 

freighters (RTK); international freight in freighters (RTK) (in Ton.km); domestic passenger 

flights; international passenger flights; domestic freighter flights; international freighter 

flights (in number of flights); domestic NOx; international NOx (in kt(NO2)); domestic 

aircraft-km; international aircraft-km (in Aircraft.km).   

3.2 Simulating alternative fuels and carbon pricing using the metamodel 

The AIM metamodel does not directly simulate fuel composition or associated CO2 

emissions, but assumes that this will be done by the IAM calling the metamodel, and the 

carbon and fuel prices used to call the metamodel adjusted accordingly. This allows 

emissions factors by fuel to be set centrally within the main IAM. Similarly, it assumes 

carbon prices are applied to all aviation CO2 (within a given context) but these values can be 

adjusted to simulate policies, like CORSIA, that use a baseline to assess which emissions will 

be subject to a carbon price and which will not. Some examples of how this could be done are 

given below.  

Biofuel or Synthetic-fuel adoption: Biofuels and/or Synthetic-fuel are likely to either be 

adopted because the combined cost of fuel + carbon is lower than that of operating using 

fossil Jet A, because a fuel blending mandate is applied, or because individual airlines have 

made the decision that the public relations benefit of reducing emissions is greater than the 

cost of using alternative fuels. In each case, adoption of alternative fuel will change effective 

model fuel and carbon prices. It is assumed that the initial calculation of relative alternative 

and conventional fuel costs is done outside the metamodel, using the IAM’s assessment of Jet 



fuel prices for a given oil price, biomass price or synthetic fuel production price.  Jet price 

and carbon price should be passed to the metamodel taking into consideration the level of 

fuel blend. A jet and carbon “blended” prices are calculated from the results of the IAM 

weighted by the ratio of each type of fuel in the blend. 

Efficiencies and technical changes: Note that the metamodel includes in its option three 

different levels of efficiency improvements applied to the aviation sector. This implies that 

efficiencies from new plane, new technologies or operational measures are out of the scope of 

the IAM and taken care in the metamodel results (these effects are taken into consideration in 

the metamodel when calculating fuel consumption, RPK ….). 

Carbon price policy with baseline: For the region in which the carbon price is applied, the 

metamodel output fuel use can be used to calculate direct CO2. This can be compared to the 

associated baseline. For example, CORSIA applies to international aviation CO2 and the 

baseline is specified as international aviation CO2 (between participating countries) in 2019. 

The fraction of international aviation CO2 which is above the year-2019 baseline can be used 

to adjust the model carbon price downwards to get the effective carbon price applying to all 

international flights. 

 


