Modeling within-country inequality and impacts in RICE50+

Johannes Emmerling¹, Pietro Andreoni, and Massimo Tavoni

¹RFF-CMCC European Institute on Economics and the Environment

NAVIGATE Expert Workshop, Sept 20th, 2021

Introduction - Motivation

Distribution of

- Income/Consumption
- Impacts
- Mitigation effort / energy share /...
- Literature
 - ▶ Dennig et al. (2015): quintiles, equal dist. within, constant over time
 - ▶ Hallegatte and Rozenberg (2017): micro simulation, monte carlo analysis
 - ▶ van Ruijven et al. (2015): heterogeneous households in CGE
 - Rao et al. (2019): empirical determinants of inequality (TFP, education,weak), SSP projection

- Based on DICE2016 equations
- (up to) 57 countries/regions
- First results and model presentation: Gazzotti et al. (2021)

- Based on DICE2016 equations
- (up to) 57 countries/regions
- First results and model presentation: Gazzotti et al. (2021)
- Features
 - flexible regional and temporal/tree setup & modular structure
 - calibrated to ENERDATA MACC curves
 - Integration of RCPs, country-level climates, climate extreme indices
 - Modules for government sector, DACCS, SRM, SLR, Inequality, Natural Capital
 - Full intertemporal optimization across coalitions

Implementation and comparison of impacts

Country level temperature (change) based (except for DICE2016,HS2017)
This work: Kalkuhl and Wenz (2020)'s preferred and robust specification

Implementation and comparison of impacts

Country level temperature (change) based (except for DICE2016,HS2017)
This work: Kalkuhl and Wenz (2020)'s preferred and robust specification

Modelling of inequality

• Welfare: $W(n) = \sum_t l(t, n) \frac{\left(\frac{C(t,n)}{l(t,n)}\right)^{1-\eta} - 1}{1-\eta} \beta^t$ now based on deciles in the optimization (as option

- mod_inequality.gms contains remaining part:
 - \blacktriangleright Carbon tax and MAC are distributed across deciles based on ()^{ω} elasticity, $\omega = 0.5$
 - Damages at the country level accrue based on ()^{ξ} elasticity ($\ddot{\xi} = 0.5$)
 - Normalization to match macro aggregates; Minimum threshold
 - Government Budget: TRANSFER(t, n) are computed based on CTAX revenue before net-negative(!)
 - distributional-neutral
 - on an equal per capita basis
 - optimally (additional control variable)

Preliminary Results - Scenario Matrix

Transfer scheme / Policy	Reference		30\$/ <i>tCO</i> 2	100\$/ <i>tCO</i> 2	COOP CBA
Impacts	w/ Impacts	w/o Impacts	w/ Impacts	w/ Impacts	w/ Impacts
Neutral					
Equal per capita	-	-			
Optimal	-	-			

Preliminary Results

TATM over time

Preliminary Results

TATM in 2100 0\$ 30\$ 100\$ cba 3 TATM in 2100 [°C] $^{\circ}$ TR neutral epc opt 1 0. neutral neutral epc opt neutral opt neutral epc epc opt

Johannes Emmerling | EIEE | NAVIGATE Workshop

Preliminary Results

NPV global

Preliminary Results - Carbon tax scenarios

Preliminary Results - Economic Impact

Preliminary Results - CBA

Preliminary Results - Economic Impact

Climate impacts directly on inequality?

Similar to Kalkuhl and Wenz (2020), Burke et al. (2015), but looking at (In)equality or deciles:

based on panel data, temperature and lcimate (30 year average)

Climate impacts directly on inequality?

Similar to Kalkuhl and Wenz (2020), Burke et al. (2015), but looking at (In)equality or deciles:

based on panel data, temperature and lcimate (30 year average)

Source: Dasgupta, Emmerling, and Shayegh (2021, under review

Conclusion

Conclusions

- Baseline inequality projections bear large uncertainty
- Issues of inequality NOT secondary to the CC issue
- Redistribution crucial for support of climate policies

Conclusion

Conclusions

- Baseline inequality projections bear large uncertainty
- Issues of inequality NOT secondary to the CC issue
- Redistribution crucial for support of climate policies

Open issues

- Different damage function specifications
- Empirical foundation of ξ ?
- > Alternatively, implement climate-econometric impact function directly on deciles or Gini
- Different transfer schemes?
- Negative Emissions!

17 / 17

Bibliography

- Dennig, F., Budolfson, M.B., Fleurbaey, M., Siebert, A., Socolow, R.H., 2015. Inequality, climate impacts on the future poor, and carbon prices. Proceedings of the National Academy of Sciences 112, 15827–15832. URL: http://www.pnas.org/content/112/52/15827, doi:10.1073/pnas.1513967112.
- Gazzotti, P., Emmerling, J., Marangoni, G., Castelletti, A., Wijst, K.I.v.d., Hof, A., Tavoni, N., 2021. Persistent inequality in economically optimal climate policies. Nature Communications 12, 3421. URL: https://www.nature.com/articles/s41467-021-23613-y, doi:10.1038/s41467-021-23613-y. number: 1 Publisher: Nature Publishing Group.
- Hallegatte, S., Rozenberg, J., 2017. Climate change through a poverty lens. Nature Climate Change 7, 250–256. URL: http://www.nature.com/nclimate/journal/v7/n4/full/nclimate3253.html, doi:10.1038/nclimate3253.
- Kalkuhl, M., Wenz, L., 2020. The impact of climate conditions on economic production. Evidence from a global panel of regions. Journal of Environmental Economics and Management 103, 102360. URL: http://www.sciencedirect.com/science/article/pii/S0095069620300838, doi:10.1016/j.jeem.2020.102360.
- Rao, N.D., Sauer, P., Gidden, M., Riahi, K., 2019. Income inequality projections for the Shared Socioeconomic Pathways (SSPs). Futures 105, 27–39. URL: https://www.sciencedirect.com/science/article/pii/S001632871730349X, doi:10.1016/j.futures.2018.07.001.
- van Ruijven, B.J., O'Neill, B.C., Chateau, J., 2015. Methods for including income distribution in global CGE models for long-term climate change research. Energy Economics 51, 530–543. URL: http://www.sciencedirect.com/science/article/pii/S0140988315002406, doi:10.1016/j.emeco.2015.08.017.

