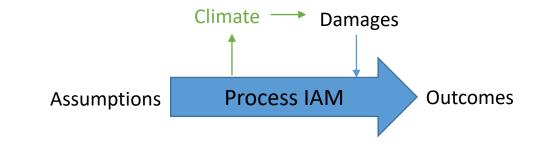
NAVIGATE/ENGAGE expert workshop session 2: Designing assessment frameworks for joint impact-mitigation studies

21 June 2021

Assessment of climate impact scenarios in the IMAGE framework

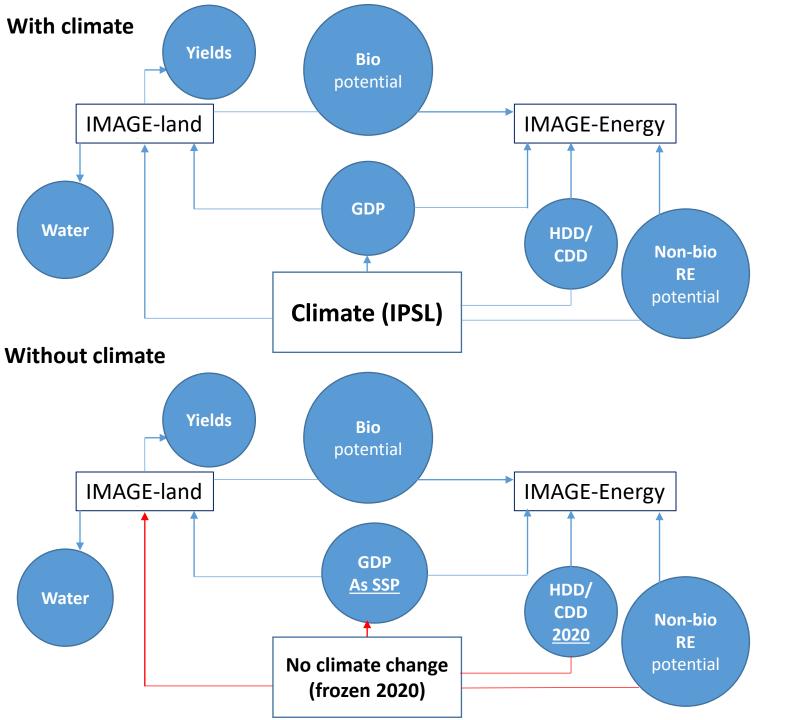
Mathijs Harmsen mathijs.Harmsen@pbl.nl


Introduction

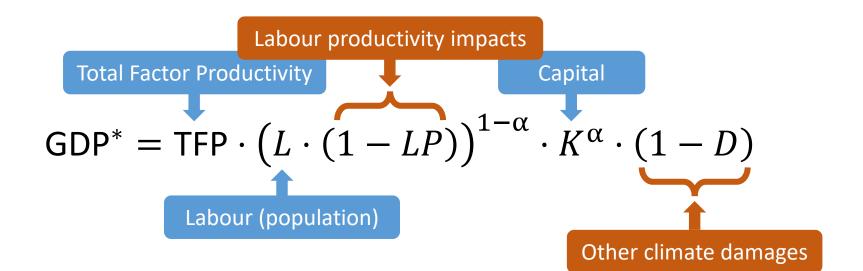
Knowledge gaps in the current literature

- Climate impact assessments (ISIMIP) focus on individual sectors, less on interactions
- Cost Benefit Analyses (CBA IAMs), integrate mitigation, adaptation, impacts, however aggregated, stylized and based on older data.
- Process IAMs typically do not include impacts and adaptation in assessments

Ambition: bridge gap


- Include climate impacts/feedbacks in IAMs, account for adaptation (more as proof as concept)
- Assess:
 - Differences between scenarios with/without impacts
 - What are the key interactions/feedbacks?
 - Added value?

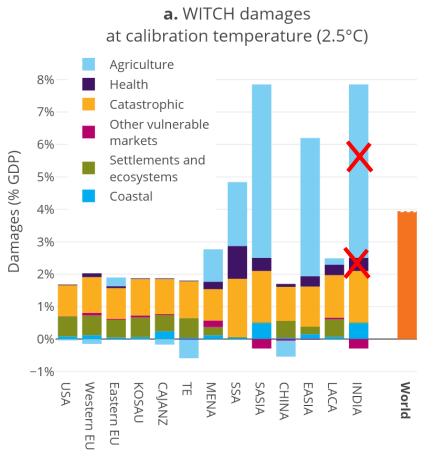
Implementation in IMAGE



Other impacts

- Sea-level rise
- Biodiversity
- Policy costs
- GHG emissions

GDP impacts, incl labour productivity: method


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821124.

Economic damages

1. Start with WITCH damage curves (most recent regional, sectoral curves)

2. Scale WITCH curves with best estimate of global damages (*Howard et al. 2017*)

3. Replace WITCH sectors by new estimates if available (labour prod. (*Van Maanen et al, 2021*), agriculture (*MAGNET model*)

Included other impacts

Energy Land/natural	Renewable supply (wind, PV, CSP, hydro, bioenergy)	Different costs supply curves based on 0.5x0.5 grid calculations (<i>Gernaat et al., 2021</i>)			
	Heating / cooling demand	Impact via population weighted HDD, CDD based on 0.5 x 0.5 grid (<i>Byers et al., 2018</i>)			
	Crop yields	Impact included via LPJ calculations in IMAGE (0.5 x 0.5 grid)			
	Food consumption	Calculated via MAGNET model			
	Drought/water scarcity	Impact via LPJml (at 0.5x0.5 grid) accounting for precipitation and agriculture impacts			
	Sea-level rise (<mark>impact only</mark>)	MAGICC (global)			
	Biodiversity (impact only)	GLOBIO			
Aggregated impact	GHGs / Policy costs	IMAGE/FAIR			

Scenarios

Name	RCP (= forcing in 2100 in W/m ²)	Climate feedbacks	Based on climate model
1) SSP2-noCF (ref)	6.0	Excluded	n.a.
2) SSP2-CF-IP (main run)	6.0	Included	IPSL
3) SSP2-CF-IP-noGDP (sens1)	6.0	Included (except GDP)	IPSL
4) SSP2-CF-H (sens2)	6.0	Included	Hadley
5) SSP2-26-noCF	2.6	Excluded	n.a.
6) SSP2-26-CF-IP	2.6	Included	IPSL

Q 1: What is the impact of climate change in a no-climate policy baseline scenario (comparison of scenario 1 and 2)

Q 2: What are the main sensitivities (role of GDP impacts, different climate pattern)(comparison of scenarios 3 / 4 to 2)

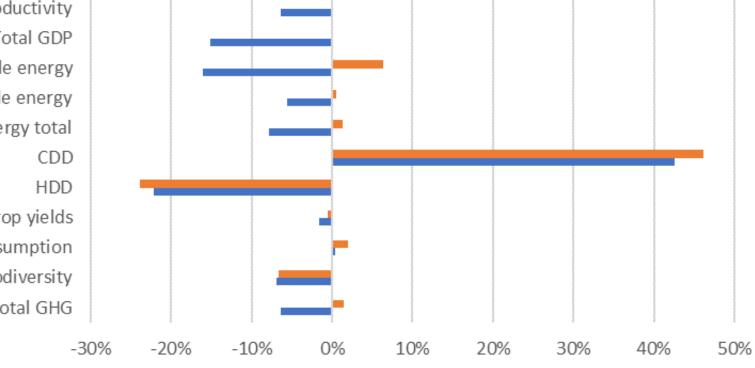
Q 3: Is this the same in a climate policy case (comparison of scenario 5 and 6)

Results

		World	Russia	Canada	W-Europe	USA	China	Brasil	India	Indonesia	West-Africa
Economy	Labour productivity	-6%	-1%	0%	-1%	-3%	-2%	-13%	-11%	-12%	-12%
	Total GDP	-15%	-5%	-6%	-7%	-8%	-6%	-19%	-32%	-29%	-24%
Energy	NonBio-RE	-16%	-5%	-3%	-6%	2%	-1%	-9%	-18%	-9%	-11%
	Bio-RE	-6%	-10%	-11%	-2%	-5%	-8%	5%	0%	-21%	-17%
	CDD	43%	302	291	222	470	596	767	888	794	997
	HDD	-23%	-1001	-873	-462	-571	-488	-53	-91	0	-1
	Final energy total	-8%	-8%	-3%	-2%	-3%	0%	-9%	-11%	-7%	1%
Land	Crop yields	-2%	37%	17%	1%	4%	-3%	-11%	-9%	-8%	-16%
	Food consumption	0%	10%	11%	-5%	5%	1%	3%	0%	-4%	0%
	Drought intensity		In progress								
	Water stress		In progress								
	Sea level rise	53 cm	Global only								
	Biodiversity	-7%	-8%	-8%	-5%	-7%	-6%	-8%	-5%	-9%	-7%
	Total GHG	-6%	-10%	-7%	2%	-4%	6%	-3%	-10%	-5%	3%

Impact indicators for largest and or noteworthy regions – Baseline – 2100 Values represent relative difference with No-Impact case. Red = most undesirable, note: green is usually still a negative impact

Conclusions


- Impacts generally correlate; temperate zones are generally less impacted, hot regions are also impact hot-spots
- Not shown: choice of climate pattern matters very little (IPSL shown, Hadley = similar)
- Not shown: impacts in a 2.6 case are obviously much smaller, but largely in line with baseline pattern)
- GDP impact is dominant (see next slide)

Dominance of GDP impact

Impact compared to no-CF case (%) - Baseline - World - 2100

Labour productivity Total GDP NonBio-Renewable energy Bio-Renewable energy Final energy total CDD HDD Crop yields Food consumption Biodiversity Total GHG

- RE (+ final energy + GHGs): Increase if there were no GDP impact, but large net decrease due to gdp impact
 = lower demand
- CDD/HDD (+ biodiversity):
 Total impact large, but GDPdependency small (only via global mean temperature)
- Crop yields + food consumption: small effects

[•] Total global impacts without GDP are generally smaller

[■] No GDP ■ All impacts included

Discussion

- Inconsistency issues:
 - Selection of specific impacts; partial picture
 - Adaptation only partly included, with feedbacks on main drivers (e.g. AC → Labour productivity)
 - Sectoral value-added impacts only partly based on endogenous processes
 - However, added consistency due to comprehensive framework and feedbacks?
 - & rich overview of impact indicators in a baseline-mitigation scenario setup

