ETH zürich

London

The need for mitigation and adaptation

Some evidence from evidence from the social cost of carbon under partial growth effects and interannual temperature variability

> Jarmo Kikstra kikstra@iiasa.ac.at

NAVIGATE/ENGAGE expert workshop 21 September 2021

Preparing late is being flexible?

Imperial College London

Some questions and answers from yesterday (and today):

- Macro-economics for climate change:
 - \Rightarrow very uncertain, but evidence of very big impacts?
- What are impacts, and which are the biggest?
 - ⇒ requires process-based understanding, necessary examples for policymakers.
 - \Rightarrow only looking at climatic temperatures is not good enough.
- Adaptation pathways:
 - ⇒ learning how and to what extent we can deal with the impacts (processes) that are coming; little evidence yet?

Preparing late is being flexible?

Some questions and answers from yesterday:

- Macro-economics for climate change:
- ⇒ very uncertain, but evidence of very big imdelling?
 What are impacts, and which terms of modelling?
 ⇒ requires process-basedy do in terms of biggest?
 ⇒ requires process-basedy do instanding, necessary exactly policymak we already do instanding, necessary exactly policymak we already do instanding is not good enormality. tanding, necessary examples

Imperial College

London

at climatic temperatures is not good enough.

Adaptation pathways:

 \Rightarrow learning how and to what extent we can deal with the impacts (processes) that are coming; little evidence yet?

The modelling in this presentation

Imperial College

Some questions and answers from yesterday:

- Macro-economics for climate change:
 - \Rightarrow very uncertain, but evidence of very big impacts?
- What are impacts, and which are the biggest?
 - ⇒ requires process-based understanding, necessary examples for policymakers
 - \Rightarrow only looking at climatic temperatures is not good enough.
- Adaptation pathways:
 - ⇒ learning how and to what extent we can deal with the impacts (processes) that are coming; little evidence yet?

The basis for this presentation

Imperial College London

PAGE IAM

ENVIRONMENTAL RESEARCH LETTERS						
LETTER • OPEN ACCESS						
The social cost of carbon dioxide under climate-economy						
feedbacks and temperature variability						
Jarmo S Kikstra ^{10,1,2,3,4} (D, Paul Waidelich ^{5,6} (D, James Rising ⁵ (D, Dmitry Yumashev ^{7,8} (D, Chris Hope ⁹						
and Chris M Brierley ² 🕩						
Published 6 September 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd						
Environmental Research Letters, Volume 16, Number 9						
Citation Jarmo S Kikstra et al 2021 Environ. Res. Lett. 16 094037						

The basis for this presentation

Imperial College London

PAGE IAM

ENVIRONMENTAL RESEARCH LETTERS
LETTER • OPEN ACCESS
The social cost of carbon dioxide under climate-economy
feedbacks and temperature variability
Jarmo S Kikstra ^{10,1,2,3,4} (D, Paul Waidelich ^{5,6} (D, James Rising ⁵ (D, Dmitry Yumashev ^{7,8} (D, Chris Hope ⁹
and Chris M Brierley ² D
Published 6 September 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd
Environmental Research Letters, Volume 16, Number 9
Citation Jarmo S Kikstra et al 2021 Environ. Res. Lett. 16 094037

Kikstra et al. (2021) Environ. Res. Lett. 10.1088/1748-9326/ac1d0b.

Imperial College London

Black: updates already in PAGE-ICE (Yumashev et al. 2019) Purple: new elements introduced by Kikstra et al. 2021

Kikstra et al. (2021) Environ. Res. Lett. 10.1088/1748-9326/ac1d0b.

Imperial College London

Black: updates already in PAGE-ICE (Yumashev et al. 2019) Purple: new elements introduced by Kikstra et al. 2021

A quick note on variability

- More realistic/correct, especially in the near-term
- Small increase in mean
- Effects more in the tails
- N.B. Interannual temperature variability is not the same as extremes or day-to-day variability

A quick note on variability

- More realistic/correct, especially in the near-term
- Small increase in mean
- Effects more in the tails
- N.B. Interannual temperature variability is not the same as extremes or day-to-day variability

Note: all results in this presentation are for SSP2-4.5.

However, we have implemented more and GDP-emissions (SSP-RCP) combinations are quite easy to add now in Mimi-PAGE.

Estimating partial persistence

Simple growth effects model:

$$GDP_{r,t} = GDP_{r,t-1} \cdot (1 + g_{r,t} - \rho \cdot \gamma_{r,t-1})$$

Growth **Persistence** Contemporary rate **parameter** damages

For *k* lags:

$$\rho = \frac{\sum_{j=0}^{k} \beta_{1,j} + 2\beta_{2,j} \cdot \text{Temperature}_{i,t}}{\beta_{1,0} + 2\beta_{2,0} \cdot \text{Temperature}_{i,t}}$$

Estimating partial persistence

Regression results:

- Limited statistical power, but some significance on global level for first lag
- Implied persistence: 52.8%

		GDPpc Growth	GDPpc Growth	GDPpc Growth	GDPpc Growth	GDPpc Growth	GDPpc Growth	
	Temperature Temperature	0.0127*** (3.36) -0.000 487***	0.0136*** (3.64) -0.000 517***	0.0106** (3.00) -0.000 456***	0.00 949** (2.65) -0.000 441***	0.00 933* (2.49) -0.000 446***	0.00 920* (2.50) -0.000 459***	
	squared L.Temperature	(-4.11)	(-4.33) -0.00674 (-1.56)	(-3.97) -0.00 413 (-1.10)	(-3.75) -0.00 549 (-1.35)	(-3.62) -0.00 578 (-1.43)	(-3.87) -0.00 459 (-1.36)	inear
	L2.Temperature			-0.00613 (-1.63)	-0.00638 (-1.76)	-0.00681 (-1.86)	-0.00 698 (-1.95)	eff
	L3.Temperature				-0.00 143 (-0.57)	-0.000 885 (-0.31)	-0.000 993 (-0.38)	ects
	L4.Temperature					-0.00 111 (-0.42)	-0.00 214 (-0.82)	0,
	L5.Temperature						0.00 176 (0.37)	
1 lag	L.Temperature		0.000 244*	0.000 206	0.000 240	0.000 245	0.000 228*	Q
	squared L2.Temperature squared L3.Temperature squared L4.Temperature squared L5.Temperature squared		(2.01)	(1.81) 0.000 123 (1.14)	(1.95) 0.000 126 (1.22) -0.0000 509 (-0.59)	(1.97) 0.000 133 (1.28) -0.0000 779 (-0.78) 0.000 101 (1.01)	(2.03) 0.000 146 (1.43) -0.0000 882 (-0.92) 0.000 143 (1.35) -0.0000 658 (-0.43)	uadratic effects
	Resulting $ ho$ 5th Monte Carlo percentile	100% —	52.81% 0.55%	27.82% 73.40%	28.36% 101.57%	10.25% 143.72%	20.81% -94.44%	0,
	95th Monte Carlo percentile	_	91.34%	87.77%	106.52%	94.79%	93.10%	
	N bic 11	6584 19 806.5 10 127.4	6519 19 677.9 10 080.4	6398 —19 377.4 9942.9	6277 19 125.8 9829.6	6155 —18 744.0 9655.6	6031 18 400.4 9500.5	

t statistics in parentheses. Standard errors are clustered at the country level.

* p < 0.05, ** p < 0.01, *** p < 0.001.

Estimating partial persistence

Regression results:

- Limited statistical power, but some significance on global level for first lag
- Implied persistence: 52.8%
- Distribution of ρ estimate:
 - ⇒ mean 50.1%
 (34.5%–69.0%,
 interquartile range)

Bastien-Olivera & Moore method

Notes:

- Increases statistical power, because it does not require estimating more and more lags
- Significance reaches until 3-yr filter (or 5-yr at p<0.10)
 - ⇒ With this data, new method does not provide substantially different results
- (Coincidentally?) 10-yr filter pretty close to 1-lag ρ estimate

	(1)	(2)	(3)	(4)
	Unfiltered	3 year filter	5 year filter	10 year filter
Temperature	0.012 933***	0.012 211**	0.009 065	0.009 761
	(3.41)	(2.79)	(1.71)	(0.90)
Temperature ²	-0.000490^{***}	-0.000436^{**}	-0.000299	-0.000258
	(-4.11)	(-3.24)	(-1.88)	(-0.95)
Resulting $ ho$	100.00%	89.00%	61.09%	52.72%
5th percentile		69.33%	9.36%	-60.29%
95th percentile		102.40%	91.38%	118.25%
Ν	6535	6535	6535	6535
BIC	-19634.1	-19632.5	-19620.8	-19615.5
11	10 045.5	10 040.3	10 034.4	10 031.8

t statistics in parentheses. Standard errors are clustered at the country level.

Percentiles are estimated via 5000 cluster bootstrap samples.

* p < 0.05, ** p < 0.01, *** p < 0.001.

Author's calculations based on the data provided by Burke et al (2015).

Regional partial persistence

Poorer vs Richer regions (split following median GDP per capita):

Uncertainty too large, no statistical significance on first lag.

Indicative/Explorative results

- Kikstra et al. method, first lag, counterintuitive:
 - \Rightarrow Richer: 62% (5th percentile: -96%; 95th percentile: 147%)
 - ⇒ Poorer: 42% (5th percentile: -147%; 95th percentile: 135%)
- Bastien-Olvera & Moore, 10-yr filter (3-yr filter), more intuitive:
 - \Rightarrow Richer: -3% (70%)
 - ⇒ Poorer: 108% (112%)

 \Rightarrow Needs more data or better methods.

18

Global GDP in 2100

Regionally differentiated effects

Impacts so large that the SCC breaks

10⁵

ഗ

Monte Carlo mean SCCO2 in

10¹

0%

25%

ASA

PAGE-ICE cap for damages — In place — Removed

50%

Persistence of market damages

75%

100%

Some important caveats

- Interregional dynamics
- Potential future adaptation

Some important caveats

- Interregional dynamics
- Potential future adaptation

- For 50% persistence,
 - \Rightarrow 2% per year SCC = \$2500
- For SCC < \$600
 - ⇒ Need to halve persistence within less than 25 years

Looking at the future for modelling

- Better data, more data, and new empirical methods to try to better estimate persistence, across heterogeneous groups. But in the lack thereof...
- Modelling adaptive capacities
- Modelling international dynamics under diverging economic development
- Don't use impact estimates based on zero persistence
- Pragmatic current approach: partial effects with *precautionary principle*, communicating using risk terminology?

Questions?

Jarmo Kikstra kikstra@iiasa.ac.at

NAVIGATE/ENGAGE expert workshop 21 September 2021

Grantham Institute and Centre for Environmental Policy, Imperial College London International Institute for Applied Systems Analysis (IIASA)

This presentation is licensed under a Creative Commons Attribution 4.0 International License

