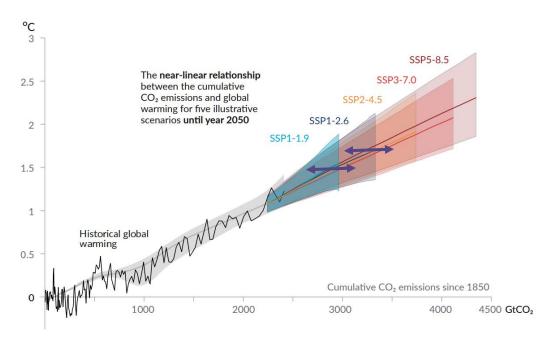


Uncertainty in non-CO₂ greenhouse gas mitigation:

Make-or-break for global climate policy feasibility

Mathijs Harmsen (<u>mathijs.harmsen@pbl.nl</u>)

Co-authors: Charlotte Tabak, Lena Höglund-Isaksson, Pallav Purohit, Detlef van Vuuren


Introduction

- Key role for non-CO₂ GHG mitigation (ambitious targets and reducing costs)
- However, relatively little attention
- Global non-CO₂ projections are generally IAM-based and Marginal Abatement Cost (MAC) curve-based
- Problems with the current non-CO₂ MACs:
 - Produced by a small number of groups
 - Long term MACs are rare (and/or inconsistent)
 - MAC data in the models is often >10 years old
 - IAMs now only use "one" middle of the road estimate
- Uncertainties in mitigation potentials are inherently high, as are the implications; Under- or overestimations would strongly affect:
 - Feasibility of global climate policy
 - Climate policy costs
 - The need for CO₂ mitigation efforts / carbon budgets

This study

- First, systematic, bottom-up approach to assess uncertainty in long-term non-CO₂ mitigation (and costs)
- Approach in short:
 - Develop long-term marginal abatement cost (MAC) curves that incorporate uncertainty in non-CO₂ mitigation potentials
 - Assess implications in (IMAGE-SSP-based) scenario study, also taking into account uncertainty in human activities
- Alternative to top-down assessment of scenario databases
 - Changes in carbon budget due to non-CO₂ mitigation uncertainly
 - SR1.5: +/-250 Gt CO₂
 - AR6: +/-220 Gt CO₂
 - -> huge compared to remaining 400 and 1000 Gt budgets in 1.5 and 2 dC scenarios
 - However, unclear what underlies the range

"Optimistic", default & "pessimistic" MACs

- Method: builds on Harmsen et al, 2019
 - But with optimistic + pessimistic MAC (based on Monte Carlo analysis)
 - And more literature (180+ papers) on mitigation measures

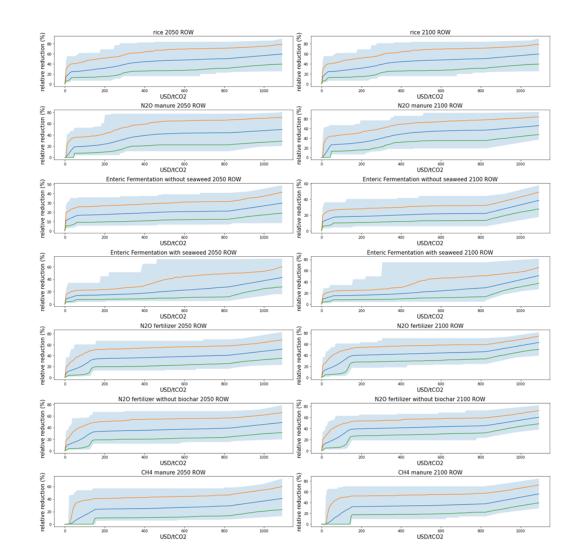
 $RP_{(t,r)} = TA_{(r)} * RE * IP_{(t)} * OVcorr_{(t,r)}$

 $MRP_{(t,r)} = (RP_{1(t,r)} + RP_{2(t,r)} + RP_{3(t,r)} \dots + RP_{x(t,r)}) * TP_{(t)} - Bcorr_{(t,r)}$

Long-term marginal abatement cost curves of non-CO₂ greenhouse gases

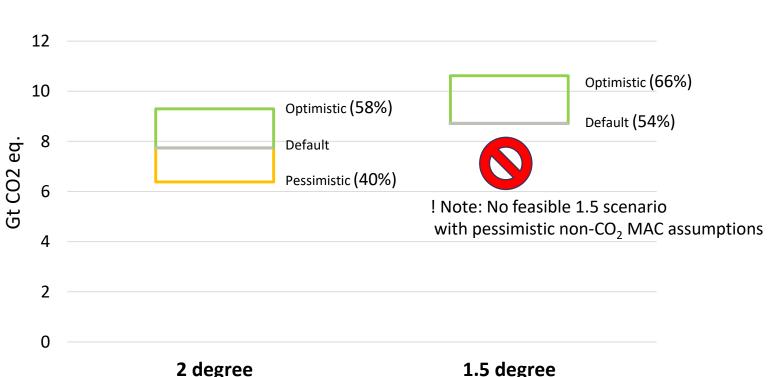
J.H.M. Harmsen^{a,*}, Detlef P. van Vuuren^a, Dali R. Nayak^c, Andries F. Hof^a, Lena Höglund-Isaksson^d, Paul L. Lucas^{a,b}, Jens B. Nielsen^a, Pete Smith^c, Elke Stehfest^a

^a PBL Neherlands Environmenual Assessment Agency, Bezudenhouseweg 30, NI-2594, AV, The Hague, the Neherlands ^b Copernicus Institute of Sustainable Development, Utrebu University, Princetonlaan 80, MI-2584 CB, Utrecht, the Neherlands ^c Institute of Biological and Environmenual Sciences, School of Biological Sciences, University of Aberlaen, 23 St Machar Dures, Aberleen, AB24 3UU, Scolland, UK ^c Art Quality and Greenhouse Gause Sproam, International Institute for Applied Systems Analysis, A-2361, Laxenburg, Austria


MACs built from components, representing:

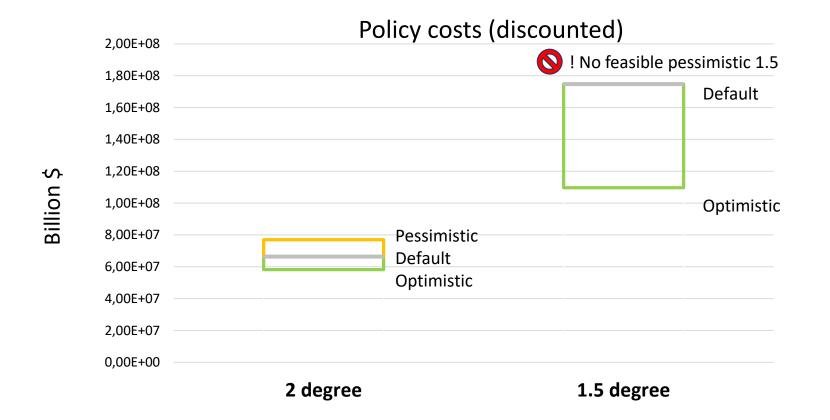
- Technical applicability
- Reduction when applied
- Implementation potential (non-technical barriers)
- Overlap between measures
- Technological progress

- Full Monte Carlo analysis (varying component values) for agricultural sources (CH_4 : enteric fermentation, manure, rice | N₂O: fertilizer, manure)
- Because: Hardest-to-abate, uncertain & most detail in prior study
- Ranges set based on literature and insights GAINS
- 1000 runs MACs: 5th, 50th, 95th percentiles


- More aggregated approach for fossil, industry, waste and F-gases:
 - Existing datasets + assumptions on long term maximum reduction potentials

Scenario results

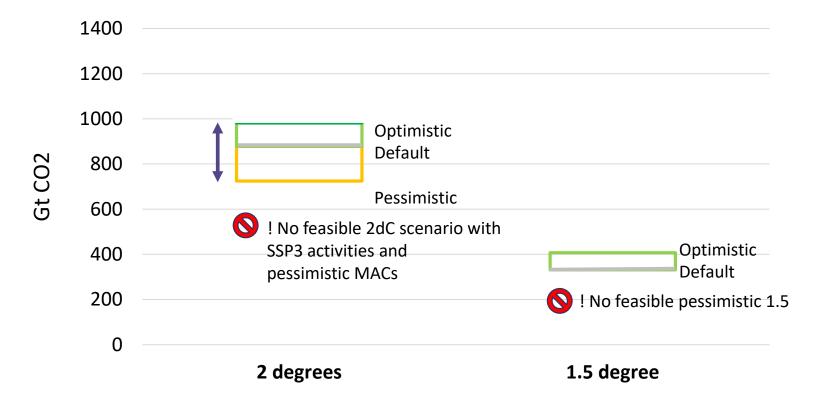
- MAC uncertainty \rightarrow Non-CO₂ reduction uncertainty:
 - 40% 58% (2dC)
 - 54% 65% (1.5dC)
- High low 2100 forcing difference (W/m²) in 2dC:
 - CH₄: 0.08
 - N₂O: 0.05
 - F-gases: 0.02


Non-CO₂ reduction (2100)

Scenario results

Climate policy costs:

• 32% - 59% difference between optimistic and pessimistic



Scenario results

Carbon budget

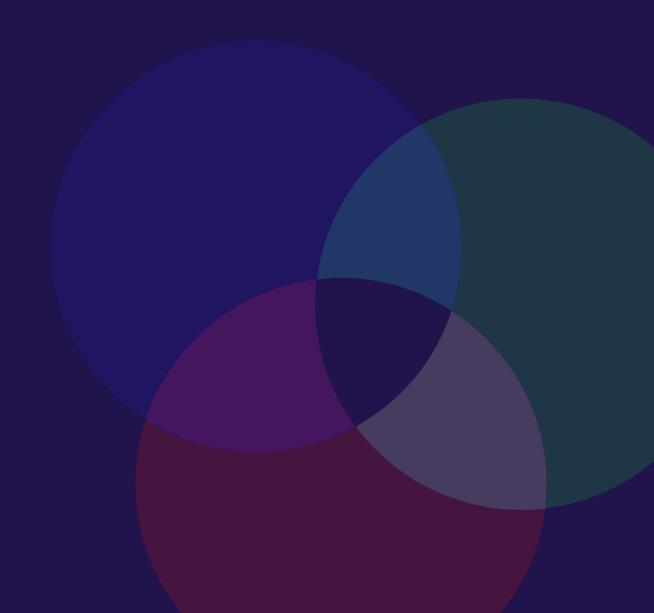
- 260 Gt range in carbon budget due to MAC uncertainty in 2dC case
- 180 Gt CO2 additional in case of SSP1 activities
- Pessimistic + SSP3 activities: 2dC out of reach

Carbon budget

Conclusions

- Non-CO₂ MAC uncertainty can have massive implications for climate policy feasibility:
 - 1.5dC target out of reach with pessimistic non-CO₂ MAC assumptions
 - Non-CO₂ relative reduction potential could vary between 40% 66%
 - Carbon budget high-low difference: 260 Gt CO₂ (2dC)
 - Climate policy costs could vary 32% (2dC) 59% (1.5dC)
- Uncertainty is even larger considering human activities:
 - 180 Gt CO₂ budget gain with SSP1 assumptions and optimistic MACs
 - 2dC out of reach with SSP3 assumptions and pessimistic MACs

Discussion points


- Partly, the uncertainty gap could be bridged by human efforts, but largely it indicates uncertainty in technical limitations
- Unknown parameter ranges remain subjective, however compensated with high Δ values, especially for costs
- Uncertain, non-included factor: wetlands
- F-gas uncertainty seems to be a small factor -> even pessimistic means large reduction
- Optimistic/Default/Pessimistic MACs are now available: <u>https://www.navigate-h2020.eu/navigator/apply/</u>

Questions?

