

Potsdam Institute for Climate Impact Research

Energy System Models

NAVIGATE-ENGAGE Summer School, Como, Italy, July 3-7, 2023

Nico Bauer, Potsdam Institute for Climate Impact Research (PIK), Germany, @NB_pik

Overview of the lecture

P I K

- Energy, economy and environment
- General structure of energy system models
- Mathematical structure of a Energy System Models
 - Partial equilibrium models: Linear programming
 - Going non-linear: demands, mixes, capacity ramp-up
 - General equilibrium models: Coupling to economy model
- Applications
 - Political economy: Fossil fuel markets and climate policy
 - Endogenous technological change: the learning curve approach
 - Issue linkage: air pollution and public health

Introduction – International inequality and climate policies

- OECD countries have high per-capita incomes
- \cdots high CO₂ emissions per capita
- ... high carbon productivity
- ... high energy productivity
- Climate change is a global commons good problem
- Each ton of CO₂ is equal

Some basics about electricity

Adoption (note different scales)

Offshore wind

Global GHG emissions

a. Global net anthropogenic GHG emissions 1990-2019⁽⁵⁾

IPCC AR6 WG3 SPM Fig. SPM 1

- Emissions are not measured directly
- Human activities related to emissions are measured (tax authorities, etc.) and multiplied by emission factors
- What are the annual CO2 emissions from fossil fuels?
- Activity: Annual fossil fuel combustion → unit EJ/yr
- Emission factor: GtCO2/EJ
- BP energy statistics for 2021: 33.884 GtCO2

		Coal	Oil	Gas	Total
Consumption	EJ/yr	160.1	184.2	145.3	489.6
Carbon Intensity	MtCO2/EJ	95	73	55	
Emissions	GtCO2/yr	15.3	13.5	8.0	36.8

• Why the difference?

Fossil fuels are not only used for energy, but also in industry

Leibniz-Gemeinschaft

From IEA energy balances Data is for 2020

Making different GHGs comparable

	Unit	CO ₂	CH ₄	N ₂ O
Atmospheric lifetime	Years	~150	12	114
GWP20	Ton/Ton	1	84	265
GWP100	Ton/Ton	1	28	298
GWP500	Ton/Ton	1	7	156
Emissions 2010		31.7Gt	330Mt	10.5Mt
Emissions 2010 GWP100	GtCO ₂ -eq	31.7	9.2	3.1

- Parameters defining GWP (lifetime and radiative forcing) are uncertain
- Choice of GWP is political and depends on the time-horizon
- CH₄ reacts strongly with O2
- Some countries have higher CH₄ emissions than others
- USA from gas, China from coal

Linear Programming – The standard form (of the primal)

$$Min \ C = \sum_{i,j} c_{i,j} x_{i,j}$$

Subject to

- Final energy demand $D_j \leq \sum_j a_{i,j} x_{i,j}$ $\forall j$ Primary energy resource $R_i \geq \sum_i x_{i,j}$ $\forall i$ Non-negativity $x_{i,j} \geq 0$ $\forall i, j$
- $c_{i,j}$ cost coefficients $x_{i,j}$ activity variables (primal variables) $a_{i,j}$ conversion factors

Linear Programming – Optimal solution

- Solution algorithm: Simplex algorithm finds set of x_{i,j} that minimizes C
- Some inequalities are binding, but not necessarily all
- Each constraint has a dual variable → shadow price
- The following complementarities hold for the inequalities

-
$$\delta_j (D_j - \sum_j a_{i,j} x_{i,j}) = 0 \quad \forall j$$
 Final energy price

-
$$\rho_i \left(R_i - \sum_i x_{i,j} \right) = 0$$
 $\forall i$ Primary energy price

$$\forall i, j$$
 Subsidy to push $x_{i,j}$ into the market

 $-\omega_{i,j}x_{i,j}=0$

A simple example

Luderer et al. (2021) https://www.nature.com/articles/s41560-021-00937-z

Note: this is for illustrative purposes. It is based on the REMIND-Model that represents price-responsive demands and energy substitution. This will come latter

Linear programming – Interpretation of results

- There is an optimal solution only if the problem is feasible → constraints define a non-empty set
- The solution is unique!
- Symmetry between
 - _
 - Decentralized market solution \rightarrow "invisible hand" of the market \rightarrow market prices
- Pre-condition is the competitive market equilibrium •
 - Atomistic actors that cannot influence the price
 - Full information on all technologies (no info-asymmetry)
 - No market entry and exit barriers; _
 - marginal quantity changes, no ramp-up costs, unit commitments
 - No transaction costs
 - Optimal solutions can still induce external effects like air pollution, but if there is no feedback
 - [Since the model is static so far we need not say anything about dynamic _ imperfections and expectation formation]

→ shadow prices

Linear Programming – A powerful modeling tool

$$Min \ C = \sum_{i,j} c_{i,j} x_{i,j}$$

Subject to

Final energy demand	$D_j \leq \sum_j a_{i,j} x_{i,j}$	$\forall j$
Primary energy resource	$R_i \geq \sum_i x_{i,j}$	∀i
Non-negativity	$x_{i,i} \ge 0$	∀i,j

 $c_{i,j}$ cost coefficients

 $x_{i,j}$ activity variables (primal variables)

 $a_{i,j}$ conversion factors

Discussion

- Emissions included via emission factors
- Dynamics can be added:
 - Exhaustible resources
 - Capacities
 - Constraints on changes
 - Changes of tech. and cost parameters (as long as no non-linearity is introduced)
- Locations, transport, net-works
- Not only energy: food, water, materials, ...
- Behavioural factors can be included
- We can analyze a broad set of policies
- Information and data demanding method
- Sensitive behaviour due to linear structure
- Many constraints are added, with little empirical basis
- Very difficult to calibrate
 - Optimal solution usually deviates from statistics
 - Replication of data requires inclusion of more processes and policies and constraints

Going non-linear – Adjustment costs

- Capacity ramp-up can be very, very rapid, if investment costs are constant
- Hard growth constraints lead to numerical issues
- Adjustment costs are softconstraints
- Investment costs increase, if capacity additions accelerate
- Build the capacity to build capacities
- Can be interpreted as a dynamic supply function

Expectations & early investments

Going non-linear – Discrete Choice Models

- Addresses radical shifts in technology mix typical for LP (flip-flop, bang-bang, penny-switching, ...)
- Approach: discrete choice models (e.g. multinominal logit)
- Choice probability i chooses n: $P_{n,i} = \frac{\exp(\beta c_{n,i})}{\sum_{j=1}^{J} \exp(\beta c_{n,j})}$

characteristics of individual i and alternative n (e.g. price)

- Data for calibration: shares (e.g. modal split in transport)
- $P_{n,i}$ is constant, if $c_{n,i}$ even under growing scale
- Changes in prices shift the mix gradually, while total demand is fulfilled

Going non-linear – Price-responsive demands

- Demand function is calibrated to replicate the demand level
- Revenue = cost + profit

Going non-linear – Price-responsive demands

- Demand function is calibrated to replicate the demand level
- Revenue = cost + profit
- A carbon tax
 - Reduces quantity
 - Increases price
- Distributional implications
 - Decreases production cost
 - Decreases producer rent
 - Decreases consumer rent
 - Generates a tax revenue
 → can be redistributed

There is light at the end of tunnel

P I K

Nico Bauer Jmmer School, Como, July 4, 2023

From partial to general equilibrium

- Where does the finance come from?
- GDP = C + I + ESC
- $W = \int_{t0}^{t1} e^{-\rho t} U(C/_{Pop}) C$
- What is energy used for?
- $GDP = f_{CES}(K, L, FE)$

Climate Change Mitigation and Fossil Fuels

Distributional Impacts and Political Economy

Historic data from BP (2012)

Note: BP reports gas and coal prices only for importing countries

- Climate policies reduce GDP
- Fossil fuel owners loose
 - Oil: price effect
 - Coal: quantity effect
- Carbon pricing revenue can compensate losses

C-price US\$/tCO ₂	Coal 93tCO ₂ /TJ	Oil 73tCO ₂ /TJ	Gas 55tCO₂/TJ
	US\$/GJ	US\$/GJ	US\$/GJ
150	16	23	13
50	6.8	15.7	7.8
20	3.9	13.5	6.1
0	2	12	5

Coal price is currently in huge turmoil (US\$/ton)

Leibniz-Gemeinscha

P I

source: tradingeconomics.com

Short note on regional mitigation costs

Leibniz-Gemeinschat

P

Endogenizing Technological Change

Rushing down the Learning Curve

Endogenous Technology Change – The Learning Curve Approach

Endogenous Technology Change – The Learning Curve Approach

Luderer et al. (2021) https://www.nature.com/articles/s41560-021-00937-z

Note: this is for illustrative purposes. It is based on the REMIND-Model that represents price-responsive demands and energy substitution. This will come latter

Air pollution and health impacts driven by IAM results

Health and environmental effects of coal phase out

Reference: no policy case NDC: policy evaluation of NDCs Coal exit: Policy evaluation of coal phase-out from 2°C scenario 2°C: policy optimization

DALY/km²

Health effects from "Coal Exit"

due to reduced air pollution

Health and environmental effects: global and regional effects

Rauner et al. (2020) https://www.nature.com/articles/s41558-020-0728-x

