

Towards an energy system with net zero greenhouse gas emissions

Keywan Riahi International Institute for Applied Systems Analysis (IIASA)

Summer School on Integrated Assessment Models Villa del Grumello, Como Lake

7 July 2023

Main Energy Transitions: History

- Non-commercial \rightarrow commercial
- Renewable \rightarrow fossil
- Rural \rightarrow urban
- $\bullet \; \text{South} \to \text{North} \to \text{South}$
- Moving to more convenient & flexible fuels
- Improved efficiency/productivity
- Conversion deepening (e.g. electrification)
- Increasing supply/demand density
- Desulfurization, Decarbonization

World Primary Energy

IASA

Source: Global Energy Assessment – Grubler et al. (2012)

Source: IIASA-WEC, 1998

Primary Energy and Wealth

North – South Orders of Magnitude

*Range across the Shared Socioeconomic Pathways (no tails)

Distribution of proved oil reserves 1998, 2008, 2018

BP Statistical Review, 2019

Oil reserves-to-production (R/P) ratios

BP Statistical Review, 2019

IASA

Slide 9

The role of technology & innovation – gas shale US

- Shale is the most abundant sedimentary rock on Earth
- No two shale deposits are created equal

^ Continuous process improvement. Over a four-and-a-half year period, from 2007 to 2011, Southwestern Energy reduced days to drill (dark blue) by 52%, even though the lateral length was increased by more than 84% (pink). Well costs (dark red) were flat to slightly lower during the period but the company's finding and development costs (F&D, light blue) were significantly reduced during the period. Production (gold) and reserves (green) greatly increased during the study period. (Data for 2011 are for the first six months of the year.)

Source: Grohmann, 2005

Changing Mineral Reserves (Cohen, 1995)

IIASA

Mineral	Reserves	Production	Reserves
	1950	1950-1980	1980
Copper	100	156	494
Iron	19,000	11,040	93,466
Aluminum	1,400	1,346	5,200
Lead	40	85	127

Spatial Diffusion of Railways

Source: After Godlund, 1952

IASA

Diffusion in Space and Time

A Simple Conceptual Diffusion Model

Source: Morill, 1968

Easter Parade on Fifth Avenue, New York

1900

Can you spot the car?

Can you spot the horse?

Source (pictures): https://www.inmotionventures.com/movement-disrupted/

Energy Efficiency and Emissions of Horses, **Early and Contemporary Automobiles**

	Horses	Cars (~1920)	Cars (~1995)
Engine efficiency [%]	4	10	20
Wastes [g/km]			
Solid	400	-	-
Liquid	200	-	-
Gaseous, including			
Carbon (CO ₂)*	170	120	70
Carbon (CO)	-	90	2
Nitrogen * total carbon content of fuel + methane (NO _x)	-	4	0.2
Hydrocarbons	2+	15	0.2

After: Ausubel, 1989

Energy for Sustainable Development

Multiple objectives and complex of interdependencies

Energy Poverty

Energy Security

Biodiversity and Food

Climate Change

Water

Air Pollution

Energy Systems Transformation

Limiting warming to 1.5C requires changes on an unprecedented scale:

- Rapid and immediate emissions reductions in all sectors
- Reaching net zero emissions (by 2050)
- A range of technologies
- Behavioral change (not sacrifice)
- Increase in investments in low-carbon options

What does carbon neutrality mean? **SECTORAL** emissions sources and sinks

Illustrative zero emissions pathway

World: Net zero CO2 emissions 2050-2070 EU: Net zero GHG by 2050

Different strategies across models

Timing of sectors for zero emissions (compared to the timing of the overall system)

Riahi et al, 2022, Nature Climate Change

2 Perspectives of the Transformation GHG Emissions Profiles

"Conventional" 1.5 C Scenario

Rapid transformation through demand-side solutions and granular technologies

Rapid Transformation driven by end-use changes (innovation & behavior)

> Granular, distributed supply side options lead the way for scaling other mitigation options, rapid change under low demand

> > **"Grand Restoration"** sink enhancement via returning land to nature

There is an enormous potential for services-led

Source: Wilson, Grubler, and Zimm (2022). Energy-Services Led Transformation. In: Routledge Handbook of Energy Transitions (Ed: Araujo). Data from: Grubler et al. (2018), De Stercke (2014), Nakicenovic et al. (1993), Nakicenovic (1990).

[a] Industry Energy

100% 75%

50% 25%

New Trends in Social and Technological Change

- Changing consumer preferences (e.g. diets)
- Generational change in materialism (service rather than ownership)
- New business models (sharing & circular economy)
- Pervasive digitalization and ICT convergence
- Rapid innovation in granular technologies and integrated digital services

Dietary change

New trends in social and technological change

2,000

1,750

million kilogram 1,250

Meat consumption

500

250

Changing consumer

preferences

July 31, 2017 22backpackersguidefortheblondeandtheclueless

1,050.5 840.7 691.8 563.8 469.7 379.6 309.2 133.1 157.7 192.2 227.9 264.1 2014 2017 2018 2019 2024 2025

Total consumption of meat substitutes worldwide from 2013 to 2026

1,687.4

Drivers license ownership *New Trends in Social and Technological Change*

Generational change in materialism (service rather than ownership) New business models (sharing & circular economy)

Pervasive digitalization and l convergence (Society 5.0)

Location	yeara	year b	age group	drivers license		
						change
				year a	year b	%-points
Austria 1	2006	2010	17-18	32	39	7
Finland	1983	2008	18-19	37	68	31
Finland	1983	2008	20-29	51	82	31
Israel 1	1983	2008	19-24	42	64	22
Israel 1	1983	2008	25-34	62	78	16
Netherlands	1985	2008	18-19	25	45	20
Netherlands	1985	2008	20-24	64	64	0
Spain	1999	2009	15-24	37	50	13

Photo 11551904 © Pedro Antonio Salaverría Calahorra | Dreamstime.com

Data sources: Sivak & Schottle, 2011; Delbosc & Currie, 2013; Nat.Stats, 2017 for Austria, Germany, Israel, Sw

granular small unit size low unit cost modular low risk

lumpy

large unit

size

high unit

cost

indivisible

high risk

Technology

Unit Size

Source: Grubler, ESA class material

Dublin: shared mobility scenarios

Source: ITF, 2018

Mobility in the Greater Dublin Area could be delivered with **only 2%** of the current vehicles!

Shared Mobility + existing rail and light-rail transit (LRT).

Pkm:	-38%
Emissions:	-31%
Congestion:	-37%

Better, more convenient, cleaner service at lower costs. Multiple Co-benefits! (congestion, pollution, space)

Disruptive End-user Innovations

 ✓ Ownership to usership IASA

- ✓ Sharing economy
- ✓ Automized to connected

e.g., devices

e.g., device convergence

Source: Grubler et al. (2018) *Nature Energy*, based on visualisation by Tupy (2012), and adapted for *UNEP Emissions Gap Report* 2021.

Rapid electrification and diffusion of renewable energy

Gruebler et al, 2018

Various energy storage proposals exist and need to be scaled up....

Pumped Hydro

Lift Energy Storage

Buoyancy Energy Storage

Gravity Energy Storage

Deep Ocean: Compressed Air or Hydrogen Link:

Deep ocear compresser sir long-terr

Hunt et al, forthcoming

Buoyancy Energy Storage

Potential >> global electricity needs

Hunt et al, forthcoming

Unconventional Technology Possibilities

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/MWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	200 - 2,000	20 – 200	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 – 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 – 1,000	20 – 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 – 0.3	Yes
Seasonal pumped hydropower storage (SPHS)	400 - 600	0.002 - 0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 – 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H2 storage	0.018	H2 storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,600	1.26	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

Energy storage cycles and storage size

Hunt et al, forthcoming

Carbon dioxide removal (CDR) needed to reach net zero emissions

Source: IPCC, 2022, Chapter 12, Cross-Chapter Box 8; based on Minx et al., 2018

CDR characteristics:

- ✓ Needed to reach net zero
- Accelerate rate of emissions reductions (early on)
- "Repair phase" in case target stringency needs to be adjusted over time and temperatures need to reversed.

Wide portfolio

- Different public perceptions
- Trade-offs and Synergies
- Legal framing (permanence and liability)
- Policy portfolios

Costs of mitigation are modest and on average lower than the avoided costs of impacts (of limiting warming to 2C)

Costs reflect cost-effective allocation of mitigation and does not consider any financial transfers or other equity considerations

- The aggregate global effects of mitigation on global GDP are small compared to global projected GDP growth:
 - → 2.6 4.2% GDP loss by 2050 for 1.5C
 - → 1.3–2.7% GDP loss by 2050 for 2C

Assuming coordinated global action. The corresponding average reduction in annual global GDP growth over 2020-2050 is 0.04–0.09 percentage points.

- Global GDP is projected to at least double (increase by at least 100%) over by 2050.
- Global cost of limiting warming to 2°C over the 21st century is lower than the global economic benefits of reducing warming, unless: i) climate damages are towards the low end of the range; or, ii) future damages are discounted at high rates

Is it feasible to achieve the climate goals?

Based on IPCC AR6 and Brutschin, E., Pianta, S., Tavoni, M., Riahi, K., Bosetti, V., Marangoni, G., & Ruijven, B. J. van. (2021). A multidimensional feasibility evaluation of low-carbon scenarios. *Environmental Research Letters*, *16*(6), 064069. <u>https://doi.org/10.1088/1748-9326/abf0ce</u>

What is feasibility?

the **plausibility of the transformation** required given a particular **temporal** and **geographical** context

Taken from SOD AR6, Chapter 1.

How can it be evaluated?

at the **"option or sectoral " level**, i.e. evaluating **a specific mitigation** strategy

at the "scenario/systemic" level, i.e. evaluating a combination of mitigation strategies within a stylized model

Citation Elina Brutschin et al 2021 Environ. Res. Lett. 16 064069

👶 Article ePub

Article PDF

Brutschin et al, 2021

Methods summary

Step 2

Step 1 Feasibility dimensions

geophysical technological economic institutional socio-cultural Indicators

For each dimension, selection of relevant indicators measuring decadal changes (among indicators available or computable based on scenario set) Categorization of level of feasibility concern for each indicator in each decade based on thresholds defined based on the literature and available empirical data.

- 3 high

Step 3

Thresholds

- 2 medium

- 1 low

Step 4	
Aggregation	
(geometric mean)	allows assessing
Aggregation within each dimension	tradeoffs among feasibility dimensions
Aggregation across —• dimensions at different points in time	allows assessing the timing and disruptiveness of the transformation
Aggregation across dimensions and across time	allows assessing the scale of the transformation

IPCC Methods – pathways level assessment

Brutschin et al, 2021

Illustrative results (IPCC AR6)

C: Illustration of the general trends (violation at any point in time)

IPCC Chapter 3, Riahi et al, 2022

TS – Geophysical dimension

Geophysical dimension (focus on key resources for ambitious climate mitigation): Some scenarios reach higher concern levels in terms of **global biomass potentials**

The main aggregation is performed using **geometric mean**

It is a standard procedure to **reduce the level of substitutability** between indicators (employed for instance for the **Human Development Index** and in many other areas (Van Puyenbroeck & Rogge, 2017))

Geophysical

TS – Technological dimension

Technological dimension:

Trade-offs between rapid scale-up solar/wind vs. CCS fossil/CCS biomass

Technological

TS – Economic dimension

Economic dimension:

Most scenarios assume a rapid transformation of the energy system which requires high levels of carbon prices/investments and prematurely retiring coal power plants

Economic

TS – Socio-cultural dimension

Socio-cultural dimension:

Many scenarios assume **substantial decrease** in demand for different services and land use changes, which would be driven by life-style changes

Socio-cultural

TS – Institutional dimension

Institutional dimension:

For many regions an unprecedented level of decarbonization will be required

Institutional

Key challenges comprise governance and institutional dimension in the developing world

Feasibility evaluation of

1.5C and 2C pathways

How can we model governance and institutional change?

Based on Andrijevic et al 2020 and Gidden et al 2023

Government effectiveness in IIASA IAM

(capacity to implement policies) is a relatively good proxy of environmental protection levels

Governance projections along SSPs based on Andrijevic et al. (2020)

Model Formulation

Governance level	Upper bound on total CO2 emission reductions for a given decade
<0.65	20% (below <mark>red</mark>)
0.66-0.7	25%
0.71-0.75	40%
0.76	Unconstrained (above green)

ENVIRONMENTAL RESEARCH LETTERS

LETTER CrossMark

OPEN ACCESS RECEIVED 24 February 2023 REVISED

17 May 2023

25 May 2023

Fairness and feasibility in deep mitigation pathways with novel carbon dioxide removal considering institutional capacity to mitigate

Matthew J Gidden, Elina Brutschin 😑, Gaurav Ganti 😳, Gamze Unlu 💿, Behnam Zakeri 💩, ACCEPTED FOR PUBLICATION Oliver Fricko', Benjamin Mitterrutzner', Francesco Lovat' O and Keywan Riahi

with shares of emissions reductions by region

Brutschin et al - Please do not Tweet, Toot, or otherwise Share/Publish - this is a work in progress!

Impact of feasibility concerns on 2°C pathways (66% not-to-exceed)

- Combined constraints most difficult
- Enablers balance institutional feasibility for highincome regions
- Combined constraints and enablers have moderate impact on costs

ENGAGE

Relative carbon price (cost effective default = 1)

Lowest achievable net-zero budget – highest achievable likelihood of staying below 1.5°C

Likelihood of peak Temperature < 1.5°C

ENGAGE

 Without feasibility restrictions, or only with technology restrictions, ~50% likelihood of <1.5 still possible

Reflecting institutional constraints lowers this to max ~15-35%

 Enablers only bring it back up to 20-40%

Is this fair?

Based on Peltz et al 2023 and the recommendations of the EU Advisory Board on Climate Change, 2023

Recommendations for a fair EU emissions budget - EU Advisory Board on Climate change

Considering the legal context

EU committments under the European Climate Law, the Paris Agreement and other relevant legal acts

Understanding the limits to emissions

 Global carbon budget, in the context of other greenhouse gas emissions

Different perspectives regarding EU's fair share of emissions

Value judgements guided by EU values and communicated transparently Quantifying pathways to climate neutrality

Up-to-date scenario evidence

Combining perspectives from different models and approaches

Assessing the implications of different pathways

Side effects and co-benefits

Resilience

Feasibility

ons

ing elimete targete based on exigentific evidence and ev

https://climate-advisory-board.europa.eu/reports-and-publications/setting-climate-targets-based-on-scientific-evidence-and-euvalues-initial-recommendations-to-the-european-commission

Formal justification underlying v f'w f

Specify how remaining carbon budgets are allocated.

Measurable characteristics of regions, countries, or populations.

A "fair" allocation of the EU budget according to different ethical criteria

of EU's fair share

EU and its responsibility to support action also internationally

New fair share analysis based on AR6 pathways indicate the need of increasing finance flows

Shonali Pachauri¹, Setu Pelz¹, Christoph Bertram², Silvie Kreibiehl³, Narasimha D. Rao^{1,4}, Keywan Riahi¹, Youba Sokona^{5,6} *(Science, 2022)*

Investments in the AR6 pathways are follow a cost-effectiveness approach (consistent with Article 3 of Paris Agreement)

The pathways, however, do not address the issue of who is financing the regional investments

New assessment of equitable and fair finance (of the investments of the AR6 pathways) suggest a major increase of finance flows from Annex-1 to non-Annex-1 regions

Energy for Poverty Eradication

Rao & Min, Soc. Ind. Res., 2018

IASA

Decent Living Standards – Material basis for Well-being

	Dimension	Description/ (Minimum) Thresholds
/	Housing	Safe, durable (permanent), min space (10 m²/cap)
	Thermal comfort	AC Use (26°C, 60% Humidity), 1 bedroom, nights only. Heating to 18°C
nysical Nellheing	Nutrition	Macro- and micronutrients (protein, zinc, iron, calories)
weinseinig	Clean ckg	LPG or electricity cook stoves
	Water 65 l/cap	65 I/cap/day, indoor access Social Wellbeing
	Sanitation	Sewage distribution (urban only)
	 Appliances 	Fridge: <200 I; TV; cell phone per adult
	Health care	\$665 per capita (national)
	Education	\$1000 -\$1500 per student (national)
	Mobility Infrastructure	10K p-km motorized; paved roads; public transit 🔸

DLS Indicators

Dimension	Unit
Food	kCal, Micronutrition
Shelter Comfort	m², Durable (ºC, RH)
Basic appliances	Stove, TV, Fridge
Health/Educ	\$\$
Clothing	Kg
Water/Sanit	Access, m ³
Mobility	P-km

Rao & Min, Soc. Ind. Res., 2018

Decent Living Gaps – Today

Energy needs for DLE significantly less than lowest scenarios in the literature

Kikstra et al., 2022

Thank you.

Visit: <u>https://iiasa.ac.at/winners-of-edits-arts-2022-competition-life-in-</u>2050-with-much-less-energy

Role of energy storage in a carbon neutral world

Behnam Zakeri, Julian Hunt, Maarten Brinkerink, (placeholder for other others) Volker Krey, Keywan Riahi

International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Unconventional Technology Possibilities

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/KWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	200 – 2,000	20 - 200	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 - 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 - 1,000	20 - 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 – 0.3	Yes
Seasonal pumped hydropower storage (SPHS)	400 - 600	0.002 - 0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 – 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H_2 storage	0.018	H ₂ storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,600	1.26	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

Mountain Gravity Energy Storage

Innovative technologies: Seasonal Storage Mountain Gravity Energy Storage

Global potential (TWh)

Innovative technologies: Seasonal Storage

Mountain Gravity Energy Storage

Energy storage investment costs (USD/MWh)

Mountain Gravity Energy Storage

Global potential (TWh)

٠

Technologies

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/KWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	1000 - 2000	50 - 100	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 – 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 - 1,000	20 - 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 – 0.3	Yes
Seasonal pumped hydropower storage (SPHS)	400 - 600	0.002 - 0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 - 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H ₂ storage	0.018	H ₂ storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,600	1.26	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

Electric Truck Gravity Energy Storage, a solution for long-term energy storage

٠

Technologies

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/KWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	1000 - 2000	50 - 100	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 - 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 – 1,000	20 - 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 – 0.3	Yes
Seasonal pumped hydropower storage (SPHS)	400 - 600	0.002 - 0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 - 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H ₂ storage	0.018	H ₂ storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,600	1.26	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

Lift Energy Storage Technology: a solution for decentralized urban energy storage

Lift Energy Storage Technology: a solution for decentralized urban energy storage

Global potential

Lift Energy Storage Technology: a solution for decentralized urban energy storage

Global potential (GWh)

Lift Energy Storage Technology: a solution for decentralized urban energy storage

Press release

Technologies

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/KWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	1000 - 2000	50 - 100	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 - 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 – 1,000	20 - 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 –	Yes
Seasonal pumped hydropower storage (SPHS)	400 – 600	0.002 – 0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 - 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H ₂ storage	0.018	H_2 storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,600	1.26	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

0 km 20 40 60 80 100 120 140 160 180

Global potential (TWh)

Global potential (TWh)

Global potential (GW)

Technologies

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/KWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	1000 - 2000	50 - 100	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 - 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 - 1,000	20 - 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 – 0.3	Yes
Seasonal pumped hydropower storage (SPHS)	400 - 600	0.002 - 0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 – 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H_2 storage	0.018	H ₂ storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,600	1.26	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

Buoyancy Energy Storage Technology: An energy storage solution for islands, coastal regions, offshore wind power and hydrogen compression

Buoyancy Energy Storage Technology: An energy storage solution for islands, coastal regions, offshore wind power and hydrogen compression

Technologies

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/KWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	1000 - 2000	50 - 100	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 - 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 - 1,000	20 - 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 – 0.3	Yes
Seasonal pumped hydropower storage (SPHS)	400 - 600	0.002 - 0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 – 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H ₂ storage	0.018	H ₂ storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,600	1.26	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

Hydrogen Deep Ocean Link: A global sustainable interconnected energy grid

Hydrogen Deep Ocean Link: A global sustainable interconnected energy grid

Energy storage technologies

Different storage technologies and their respective storage cycles.

Storage type	Storage technologies	Details	Storage cycles			
	Pumped hydro	Daily, weekly, seasonal	Daily, weekly, seasonal			
		Energy Volt	Daily			
		Gravitricity	Daily			
	Gravity storage	Mountain gravity	Daily, weekly, seasonal			
		Lift energy storage	Daily, weekly			
Mechanical		Electric truck hydropower	Daily, weekly, seasonal			
		Adiabatic storage	Daily, weekly			
	Compressed air/H2	AirBattery (isothermal)	Daily, weekly			
		Buoyancy (isothermal)	Daily, weekly			
	Flywheels	Flywheels	Hourly			
Elotrochomio	Batteries	Batteries (many)	Daily, weekly			
cleriochemic	Hydrogon	Power-to-power	Daily, weekly, seasonal			
a	nyurogen	Power-to-fuel	Daily, weekly, seasonal			
		Pit storage	Seasonal			
	Canaible boot	Underground thermal	Seasonal			
The survey of	Sensible neal	Hot water tanks	Daily, weekly			
Inermal		Molten salt	Daily, weekly			
	Latent heat	Ice storage	Daily, weekly, seasonal			
	Thermochemical	Thermal chemical	Daily, weekly, seasonal			
Electrical	Capacitors	Ultra-capacity	Hourly			
Legend	Legend: we have published or under review we have not published					

Technologies

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/KWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	1000 - 2000	50 - 100	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 - 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 - 1,000	20 - 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 – 0.3	Yes
Seasonal pumped hydropower storage (SPHS)	400 - 600	0.002 - 0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 - 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H ₂ storage	0.018	H ₂ storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,000 – 2,000	1 – 3	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

Isothermal deep ocean compressed air energy storage: an affordable solution for long-term energy storage

Isothermal deep ocean compressed air energy storage: an affordable solution for long-term energy storage

Energy storage options

Storage type	Storage technologies	Details	Storage cycles
	Pumped hydro	Daily, weekly, seasonal	Daily, weekly, seasonal
		Energy Volt	Daily
		Gravitricity	Daily
	Gravity storage	Mountain gravity	Daily, weekly, seasonal
		Lift energy storage	Daily, weekly
Mechanical		Electric truck hydropower	Daily, weekly, seasonal
		Adiabatic storage	Daily, weekly
	Compressed air/H2	AirBattery (isothermal)	Daily, weekly
		Buoyancy (isothermal)	Daily, weekly
	Flywheels	Flywheels	Hourly
	Batteries	Batteries (many)	Daily, weekly
Eletrochemical	Lludrogon	Power-to-power	Daily, weekly, seasonal
	nyurogen	Power-to-fuel	Daily, weekly, seasonal
		Pit storage	Seasonal
Thermal	Consible boot	Underground thermal	Seasonal
	Sensible heat	Hot water tanks	Daily, weekly
		Molten salt	Daily, weekly
	Latent heat	Ice storage	Daily, weekly, seasonal
	Thermochemical	Thermal chemical	Daily, weekly, seasonal
Electrical	Capacitors	Ultra-capacity	Hourly

Mountain Gravity Energy Storage

Buoyancy Energy Storage

Potential >> global electricity needs

Hunt et al, 2020, 2021

Unconventional Technology Possibilities

Name	Installed capacity cost (USD/KW)	Energy Storage cost (USD/MWh)	Installed capacity per project (MW)	Storage Cycle	Global Potential (TWh)	11 regions
Mountain Gravity Energy Storage (MGES)	200 - 2,000	20 – 200	1 - 20	Seasonal, pluriannual	8.684	Yes
Electric Truck Gravity Energy Storage (ETGES)	1,200	1.2	20 - 100	Monthly, seasonal	5.400	Yes
Lift Energy Storage (LEST)	500 - 1,000	20 – 120	0.02 – 1 (per building)	Ancillary, daily, weekly	0.03 - 0.3	Yes
Seasonal pumped hydropower storage (SPHS)	400 - 600	0.002-0.100	100 - 5000	Seasonal, pluriannual	17.300	Yes
Buoyancy Energy Storage Technology (BEST)	4,000 - 8,000	50 - 100	10 - 100	Ancillary, daily, weekly	∞ (deep-sea)	Not yet
Deep hydrogen ocean link (HYDOL)	H2 storage	0.018	H2 storage	Seasonal, pluriannual	∞ (deep-sea)	Not yet
Isothermal deep ocean compressed air energy storage (IDO-CAES)	1,600	1.26	100 – 1000	Monthly, seasonal, pluriannual	∞ (deep-sea)	Not yet

Energy investment needs

1.5°C require rapid shift and scale-up of energy investments:

- ✓ By 2030 80% of all investments need to be carbon-neutral
- In the next decade, investments into decarbonizing power are dominating, especially solar and wind, plus "system" investments into transmission & distribution and storage
- Coal, and fossil power generation investments are eliminated nearly immediately, and gas and oil investments strongly reduced

Share of investments 1.5°C scenarios

Bertram et al, 2021