

Next generation of advanced integrated assessment modelling to support climate policy making

# Distributional implications of climate policies and impacts

Johannes Emmerling, October 10th, 20223



#### INAVIGATE

#### Overview

- Distributional implications of climate policies
- Heterogeneity and Inequality, and the impact of climate change
- The potential role for carbon revenue redistribution
- Integrating climate impacts
- Combined assessment, and linking it to the acceptability of climate policies



#### **I INAVIGATE** The role of inequalities

## Climate impacts will lead to an increase of inequality between countries



... which is another important reason that staying below 2\*1°C or 1.5 degrees is optimal





#### **NAVIGATE** Incidence of climate policies

- Distributional incidence of a carbon tax, here of 25 EUR / tCO2 in Europe
- Regressive, esp. for lower deciles
- Includes direct and indirect emissions





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821124.

Source: Feindt et al. (2022)

#### **I I NAVIGATE** Incidence of climate policies

- (Mildly) regressive
- esp. in richer countries







This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821124.

Source: Emmerling et al. (2023)

#### **INAVIGATE** Incidence of climate impacts

- Across 160 countries, estimated impact per deciles
- ➔ Mostly regressive within countries
- Increase in the Gini index by about 3 points (median) by 2100 (SSP3-7.0)
- Overall climate impact income elasticity:  $\epsilon_{d,y} = 0.72$

Distribution of impacts in 2100 - SSP3 - 7.0 With BHM-adaptation



• One fourth of global inequality is within countries.



## INAVIGATE Ten countries, Eight models MIP





## INAVIGATE Ten countries, Eight models MIP

#### Impact on the Gini index [Model median]





#### **NAVIGATE** Ten countries, Eight models MIP

#### Impact on the Gini index 2030 2050 2100 **Mitigation Costs** +0.3 [points] Model Reference AIM -0.8 E3ME 0 -2.7 4 GEM-E3 **EPC** Redistribution NICE ReMIND RICE50+ \_⊑ Change i WITCH -1.0 -3.2 and with impacts -10 -Brazil ERAGE WERAGE AVERAGE rance Russia China Africa Canada Vlexico China Brazil Canada France Japan Russia Mexico China Brazil India States Russia States apan Japan India Africa



#### **NAVIGATE** Distributional implications and acceptance

- Global assessment (almost) at the country level
  Which sub-populations are
- Which sub-populations are better off under WB2C or Current policies
- Short term: EPC transfers crucial
- Long term, revenues dissipate, impacts dominate





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821124.

Source: Emmerling et al. (2024)

#### INAVIGATE

#### Conclusions

- Climate policies will be most likely regressive including in Europe
- Redistribution is key, a "climate dividend" can easily achieve progressivity of the policy
- Taking into account potentially regressive climate impacts makes climate ambition inequality-reducing
- but more so in the long run...
- While for policy acceptance redistribution is key in the short term (from virtually everyone opposing to a two-third majority)





Next generation of advanced integrated assessment modelling to support climate policy making

#### Thank you!

#### Questions?

