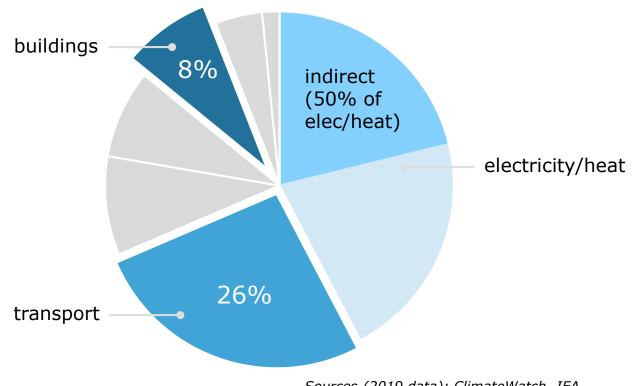


Next generation of advanced integrated assessment modelling to support climate policy making


The role of demand-side measures in climate mitigation pathways

Rik van Heerden; Oreane Edelenbosch; Luiz Bernardo Baptista; Alice Di Bella; Vassilis Daioglou; Francesco Pietro Colelli; Johannes Emmerling; Panagiotis Fragkos; Thomas Le Gallic; Robin Hasse; Johanna Hoppe; Paul Kishimoto; Florian Leblanc; Julien Lefèvre; Gunnar Luderer; Giacomo Marangoni; Alessio Mastrucci; Robert Pietzcker; Pedro Rochedo; Bas van Ruijven; Roberto Schaeffer; Sonia Yeh; Detlef van Vuuren

Introduction

- Energy-related GHG emissions in *buildings* and *transport*:
- IPCC: sectoral GHG emission reductions possible by 2050 of 40-70%
 - but large uncertainty

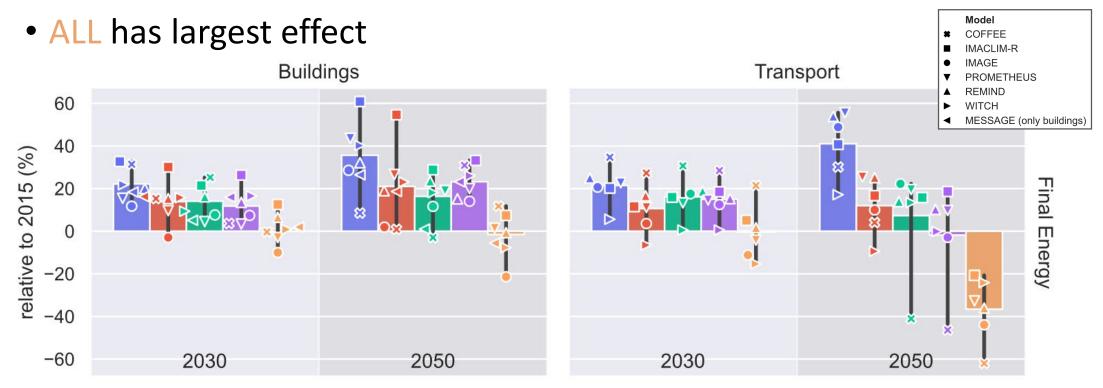
Objective

Explore the emission reduction potentials of demand-side measures in transport and buildings from a system-perspective

 \rightarrow What is the most optimal strategy?

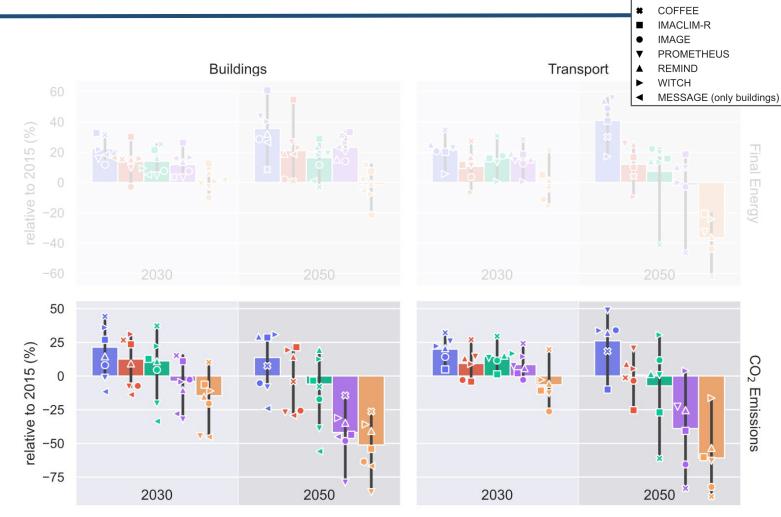
Strategy				
Scenarios		activity reduction/shift	technological improvements	electrification / fuel shift
Sectors	buildings	 Flexible use of buildings (e.g. co-housing, co-working) Limited floorspace per capita Multi-family housing Change in setpoint temperatures 	 Building codes/standards Energy performance certification More efficient heating, ventilation and air conditioning Increased renovation rate 	 Adoption of heat pumps Electrification of space/water heating Phase out non-clean heating fuels Ban on <i>new</i> natural gas connections Building-integrated renewables
	land-based transport	 Less private vehicles Improved road freight logistics Bike lanes + pedestrian zones Improved PT infrastructure Car-sharing/pooling 	 Efficiency standards for passenger vehicles and trucks 	 Electrification of passenger vehicles and light-duty trucks (BEV/FCEV) Phase out of diesel engines for heavy-duty vehicles
	international transport	 Fuel tax for aviation Increased virtual connectivity Local manufacturing and storage Slow steaming shipping Phase out short-haul air traffic 	 Efficiency standards for new aircrafts and ships Environmental certification (air)ports 	 Electric short-haul planes Electrification of ports and zero- emission berth (<i>cold ironing</i>) Increased use of biofuels/electrofuels

Scenarios: methods


- 1. Scenario for each strategy
- 2. Two climate ambitions:
 - 1. National Policies implemented (**NPi**)
 - 2. Limit global warming to **1.5 °C**

INAVIGATE Energy demand

- ACT, TEC, and ELE reduce energy demand compared to reference
 - But increase with respect to 2015

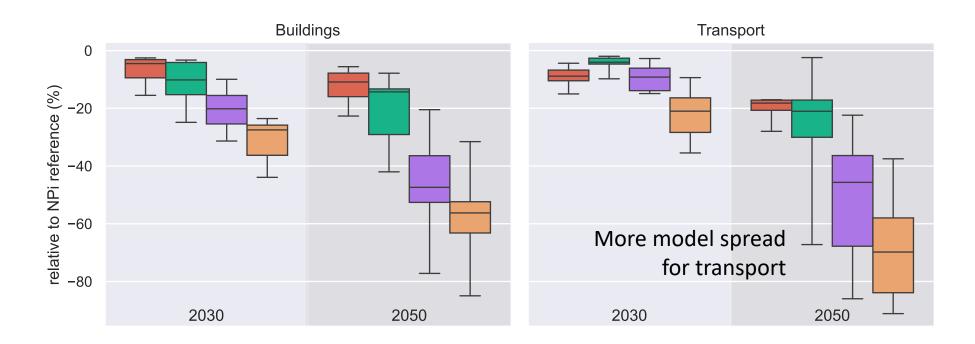


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821124.

REF, ACT, TEC, ELE, ALL 6

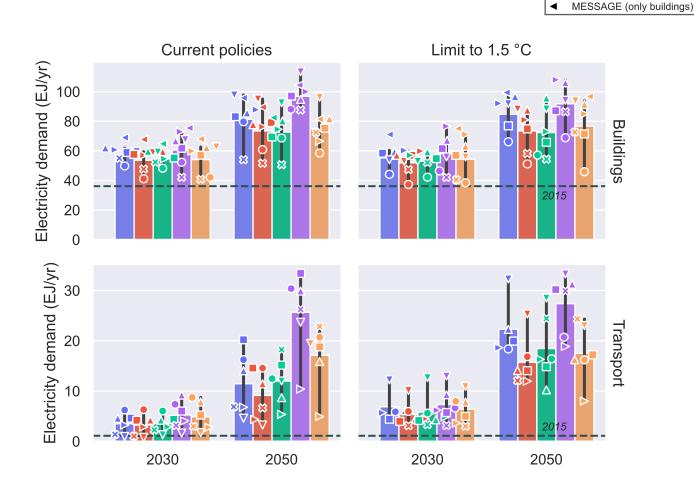
NAVIGATE Direct CO₂ emissions

- All strategies reduce emissions
- Largest reduction by ELE
 - particularly in 2050
- Similar patterns for buildings and transport



Model

I NAVIGATE CO₂ mitigation potential


- Largest reduction by ELE
 - particularly in 2050

I NAVIGATE Electricity demand

- Large overall increase
 - Requires increased generation, storage, grids, etc.
- ACT and TEC have slightly lower electricity demand
- Sharp increase in electricity demand for ELE
 - ALL helps to mitigate

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821124.

REF, ACT, TEC, ELE, ALL 9

Model COFFEE IMACLIM-R IMAGE PROMETHEUS REMIND WITCH

Conclusions

- Demand-side measures can reduce direct emissions by 60% (buildings) and 70% (transport) in 2050
- No single ideal strategy
 - <u>Electrification</u> has the largest impact on emissions
 - But increases stress on <u>electricity supply</u>
 - Combining different approaches
 - Further reduces emissions
 - Alleviates stress on supply-side

Next generation of advanced integrated assessment modelling to support climate policy making

Thank you!

Rik van Heerden; Oreane Edelenbosch; Luiz Bernardo Baptista; Alice Di Bella; Vassilis Daioglou; Francesco Pietro Colelli; Johannes Emmerling; Panagiotis Fragkos; Thomas Le Gallic; Robin Hasse; Johanna Hoppe; Paul Kishimoto; Florian Leblanc; Julien Lefèvre; Gunnar Luderer; Giacomo Marangoni; Alessio Mastrucci; Robert Pietzcker; Pedro Rochedo; Bas van Ruijven; Roberto Schaeffer; Sonia Yeh; Detlef van Vuuren

