RFF-CMCC-NAVIGATE Webinar Key findings from the NAVIGATE project

Breakout session Shipping

Eduardo Müller-Casseres CENERGIA/COPPE

INAVIGATE

NAVIGATE work on shipping - examples

Decarbonizing the International Shipping and Aviation Sectors

by 🙉 Panagiotis Fragkos 🖂 💿

E3Modelling Societe Anonyme, 11523 Athens, Greece

Energies 2022, 15(24), 9650; https://doi.org/10.3390/en15249650

Original submission received: 18 November 2022 / Revised: 9 December 2022 / Accepted: 16 December 2022 / Published: 19 December 2022

Global futures of trade impacting the challenge to decarbonize the international shipping sector

<u>Eduardo Müller-Casseres</u>^a <u>∧</u> <u>⊗</u>, <u>Oreane Y. Edelenbosch</u>^b <u>⊗</u>, <u>Alexandre Szklo</u>^a <u>⊗</u>, <u>Roberto Schaeffer</u>^a <u>⊗</u>, <u>Detlef P. van Vuuren</u>^{b c} <u>⊗</u>

Production of alternative marine fuels in Brazil: An integrated assessment perspective

Eduardo Müller-Casseres^a, Francielle Carvalho^a, Tainan Nogueira^a, Clarissa Fonte^a, Mariana Império^a, Matheus Poggio^a, Huang Ken Wei^a, Joana Portugal-Pereira^{a b}, Pedro R.R. Rochedo^a, Alexandre Szklo^a, Roberto Schaeffer^a 2

NAVIGATE work on shipping

International shipping in a world below 2°C

International shipping in a world below 2°C

Eduardo Müller-Casseres Rebecca Draeger Luiz Bernardo Baptista Joana Portugal-Pereira Pedro R. R. Rochedo Alexandre Szklo Roberto Schaeffer

Olivier Dessens

Panagiotis Fragkos Ioannis Tsiropoulos Anastasis Giannousakis Nikolaos Tsanakas

Hesam Naghash Johannes Emmerling Laurent Drouet

Florian Leblanc Thomas Le Gallic

Maarten van den Berg Isabela S. Tagomori Detlef P. van Vuuren Harmen-Sytze de Boer

IMO2018 and IMO2023

A decreasing energy efficiency improvement potential

Interactions with the energy system and obstacles to alternative fuels

Technological inflexibility

Vessel survival rate

0-4 yrs

20+ yrs

Intercomparison models

	Time horizon	Туре	Solution method	Solution concept	Int. shipping demand	Discount rate % p.a.
COFFEE 1.5	2100	Bottom-up	Intertemporal optimization with perfect foresight	Partial equilibrium, focusing on energy, agriculture, and land use	Endogenous for main energy and agricultural products. General cargo driven by GDP. For most products, int. shipping demand is a result from the global model optimization	5
IMACLIM-R 2.0	2100	Hybrid	Recursive dynamic	General equilibrium (closed economy)	Endogenous to trade activities of all economic sectors	n/a
IMAGE 3.2	2100	Bottom-up	Recursive dynamic	Partial equilibrium (price elastic demand)	Demand is projected with constant elasticity of the industry value added, and demand sensitivity to transport prices depends on its share of energy costs in the total service costs	10
PROMETHEUS 1.2	2050	Hybrid	Recursive dynamic	Energy system simulation model, focusing on demand and supply	Semi-endogenous driven by trade of energy products and GDP developments	8
TIAM-UCL 4.1.2	2100	Bottom-up	Intertemporal optimization with perfect foresight	Partial equilibrium, focusing on the energy system	Endogenous for main energy commodities. General non-energy cargo driven by GDP	3.5
WITCH 5.0	2100	Hybrid	Intertemporal optimization with perfect foresight	General equilibrium	Demand evolution is based on calibrated income and price elasticities	Ramsey rate (3- 5)

Energy conversion in ships

Fuel groups

Group	Description	Examples			
Conv	Conventional marine fuels	Heavy Fuel Oil (HFO) Marine Diesel Oil (MDO) Marine Gas Oil (MGO)			
Oilseed	Animal fats- and oilseed-based fuels	Biodiesel Hydrotreated Vegetable Oil (HVO) Straight Vegetable Oil (SVO)			
D-synt bio	Synthetic drop-in biofuels	Biomass-to-Liquids diesel (BtL-diesel) Biomass-to-Liquids heavy (BtL-heavy)			
D-synt other	Other drop-in synthetic fuels	Power-to-Liquids diesel (e-diesel) Power-to-Liquids heavy (e-heavy)			
AG-fos	Fossil alcohol and gases	Fossil Liquified Natural Gas (LNG) Fossil Liquefied Petroleum Gas (LPG) Fossil methanol			
AG-bio	Bio-alcohols and biogases	Bio-LNG Biomethanol Ethanol			
AG-synt	Synthetic alcohols and gases	Power-to-Gas LNG (e-LNG) Power-to-Gas LPG (e-LPG) Power-to-Liquids methanol (e-methanol)			
H ₂ /NH ₃	Hydrogen and ammonia	Hydrogen Ammonia			
Elec	Electricity	Electricity			

	COF	IMC	IMG	РМТ	TIA	WTC	Fuel group
Heavy Fuel Oil (HFO)	Х	Х	Х	Х	Х	Х	Conv
Marine Diesel Oil (MDO)	Х	Х	Х	Х	Х	Х	
Straight Vegetable Oil (SVO)				Х			Oilseed
Hydrotreated Vegetable Oil (HVO)	Х		Х	Х			
Fatty Acid Methyl Esters (FAME)	Х			Х	Х	Х	
Biomass-to-Liquids Diesel (BtL-Diesel)		Х	Х	Х			D-synt bio
Biomass-to-Liquids Heavy (BtL-Heavy)	Х						
Hydrogen-Based Diesel (H ₂ -Diesel)	Х			Х		Х	D-synt
Hydrogen-Based Heavy (H ₂ -Heavy)	Х						other
Fossil Liquefied Natural Gas (Fossil LNG)	Х			Х	Х		AG-fos
Fossil Liquefied Petroleum Gas (Fossil LPG)							
Fossil Methanol	Х						
Bio-Based Liquefied Natural Gas (Bio-LNG)				Х			AG-bio
Biomass-to-Liquids Liquefied Petroleum Gas (BtL-LPG)	Х						
Biomethanol	Х		Х	Х			
Ethanol	Х		Х				
Hydrogen-Based Liquefied Natural Gas (H ₂ -LNG)				Х	Х		AG-synt
Hydrogen-Based Liquefied Petroleum Gas (H ₂ -LPG)							
Hydrogen-Based Methanol	Х					Х	
Hydrogen	Х		Х	Х	Х	Х	H_2/NH_3
Ammonia	Х	Х		Х	Х		
Electricity				Х			Elec

Results Int. shipping CO₂ emissions

● COFFEE ● IMACLIM-R ● IMAGE ● PROMETHEUS ● TIAM-UCL ● WITCH

Results Int. shipping fuel mix

Global primary energy

Int. shipping final energy

Key findings - shipping

- Diversity of candidate alternative fuels
 - Production routes
 - Final energy carriers
- The decarbonization of shipping should be seen as part of a wider challenge
- IAMs show that a combination of fuel options is required to achieve decarbonization
- Models that represent several low-carbon alternatives tend to show a deeper emission reduction
- Strong relation with CDR
- IMO2018 aligns with the perspective brought by IAMs
- IMO2023 requires further attention future studies

RFF-CMCC-NAVIGATE Webinar Key findings from the NAVIGATE project

Thank you.

Eduardo Müller-Casseres CENERGIA/COPPE

INAVIGATE